Publications by authors named "Vibhudutta Awasthi"

The next major advancement in managing myocardial infarction (MI) patients is to protect myocardium against ischemia-reperfusion injury. Although several cardioprotective agents are being developed, their myocardial delivery is still a challenge. In this study, we designed a novel liposome-based nanocarrier for active targeting of damaged myocardium and demonstrated delivery of atorvastatin (ATV) as a model drug.

View Article and Find Full Text PDF

Microvascular endothelial dysfunction, characterized by impaired neurovascular coupling, reduced glucose uptake, blood-brain barrier disruption, and microvascular rarefaction, plays a critical role in the pathogenesis of age-related vascular cognitive impairment (VCI). Emerging evidence points to non-cell autonomous mechanisms mediated by adverse circulating milieu (an increased ratio of pro-geronic to anti-geronic circulating factors) in the pathogenesis of endothelial dysfunction leading to impaired cerebral blood flow and cognitive decline in the aging population. In particular, age-related adipose dysfunction contributes, at least in part, to an unfavorable systemic milieu characterized by chronic hyperglycemia, hyperinsulinemia, dyslipidemia, and altered adipokine profile, which together contribute to microvascular endothelial dysfunction.

View Article and Find Full Text PDF

The tumor microenvironment (TME) plays a pivotal role in cancer progression by fostering intricate multicellular crosstalk among cancer cells, stromal cells, and immune cells. This review explores the emerging paradigm of utilizing nanoparticles to disrupt this crosstalk within the TME as a therapeutic strategy. Nanoparticles are engineered with precise physicochemical properties to target specific cell types and deliver therapeutic payloads, thereby inhibiting critical signaling pathways involved in tumor growth, invasion, and metastasis.

View Article and Find Full Text PDF

Microvascular endothelial dysfunction, characterized by impaired neurovascular coupling, reduced glucose uptake, blood-brain barrier disruption, and microvascular rarefaction, plays a critical role in the pathogenesis of age-related vascular cognitive impairment (VCI). Emerging evidence points to non-cell autonomous mechanisms mediated by adverse circulating milieu (an increased ratio of pro-geronic to anti-geronic circulating factors) in the pathogenesis of endothelial dysfunction leading to impaired cerebral blood flow and cognitive decline in the aging population. In particular, age-related adipose dysfunction contributes, at least in part, to an unfavorable systemic milieu characterized by chronic hyperglycemia, hyperinsulinemia, dyslipidemia, and altered adipokine profile, which together contribute to microvascular endothelial dysfunction.

View Article and Find Full Text PDF

MAP4K4 is a serine/threonine protein kinase belonging to the germinal center kinase subgroup of sterile 20 protein family of kinases. MAP4K4 has been involved in regulating multiple biologic processes and a plethora of pathologies, including systemic inflammation, cardiovascular diseases, cancers, and metabolic and hepatic diseases. Recently, multiple reports have indicated the upregulation of MAP4K4 expression and signaling in hyperglycemia and liver diseases.

View Article and Find Full Text PDF

Metabolic (dysfunction)-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease, is a growing global health concern with no approved pharmacological treatments. At the same time, there are no standard methods to definitively screen for the presence of MASLD because of its progressive nature and symptomatic commonality with other disorders. Recent advances in molecular understanding of MASLD pathophysiology have intensified research on development of new drug molecules, repurposing of existing drugs approved for other indications, and an educated use of dietary supplements for its treatment and prophylaxis.

View Article and Find Full Text PDF

Objectives: Revascularization is necessary in patients with ischemic stroke, however it does not address inflammation that contribute to reperfusion injury and the early growth of ischemic core. We investigated EF24, an anti-inflammatory agent, in a stroke model.

Methods: Ischemic stroke was induced in mice by occluding middle cerebral artery for 1 h followed by reperfusion.

View Article and Find Full Text PDF

Location and extent of necrosis are valuable information in the management of myocardial infarction (MI). . We investigated 2-deoxy-2-F-fluoro glucaric acid (FGA), a novel infarct-avid agent, for positron emission tomography (PET) of MI.

View Article and Find Full Text PDF
Article Synopsis
  • Early diagnosis of pancreatic diseases is crucial, and zinc levels in pancreatic tissues are key indicators of pancreatic function.
  • Researchers developed a zinc-chelating imaging probe (ZCIP) that can be tagged with a radioactive substance (Tc) for non-invasive imaging of the pancreas using SPECT technology.
  • The study found that the Tc-labeled ZCIP effectively targets the pancreas with over 95% efficiency, suggesting its potential as a new diagnostic tool for pancreatic diseases like pancreatitis.
View Article and Find Full Text PDF

The TLR4-interacting SPA4 peptide suppresses inflammation. We assessed the structural and physicochemical properties and binding of SPA4 peptide to TLR4-MD2. We also studied the changes at the whole transcriptome level, cell morphology, viability, secreted cytokines and chemokines, and cell influx in cell systems and mouse models challenged with LPS and treated with SPA4 peptide.

View Article and Find Full Text PDF

Advances in nanotechnology have favored the development of novel colloidal formulations able to modulate the pharmacological and biopharmaceutical properties of drugs. The peculiar physico-chemical and technological properties of nanomaterial-based therapeutics have allowed for several successful applications in the treatment of cancer. The size, shape, charge and patterning of nanoscale therapeutic molecules are parameters that need to be investigated and modulated in order to promote and optimize cell and tissue interaction.

View Article and Find Full Text PDF

Background: Drug-induced cardiomyopathy is a significant medical problem. Clinical diagnosis of myocardial injury is based on initial electrocardiogram, levels of circulating biomarkers, and perfusion imaging with single photon emission computed tomography (SPECT). Positron emission tomography (PET) is an alternative imaging modality that provides better resolution and sensitivity than SPECT, improves diagnostic accuracy, and allows therapeutic monitoring.

View Article and Find Full Text PDF

Spiropyrans have been investigated for their thermo- and photochromic characteristics, but their biotherapeutic properties have not been addressed. We report anti-proliferative properties of a novel dinaphthospiropyran analogue (1). The compound 1 was synthesized by a simple and expedient method using a one-pot acid-catalyzed aldol condensation of 2-hydroxy-1-naphthaldehyde with 4-piperidone followed by an acetalization reaction.

View Article and Find Full Text PDF

Spiropyrans have been extensively investigated because of their thermo- and photochromic characteristics, but their biotherapeutic properties have not been explored much. We report anti-proliferative properties of a novel 3,3'-azadimethylene dinaphthospiropyran 11. Dibenzospiropyrans and dinaphthospiropyrans were synthesized by a simple and expedient method using acid-catalyzed aldol condensation of salicylaldehyde and 2-hydroxy-1-naphthaldehyde, respectively, with cyclic ketones.

View Article and Find Full Text PDF

Prostate cancer (PCa) is the leading cause of death by cancer in men. Because of the drastic decline in the survival rate of PCa patients with advanced/metastatic disease, early diagnosis of disease and therapy without toxic side effects is crucial. Chemotherapy is widely used to control the progression of PCa at the later stages; however, it is associated with off-target toxicities and severe adverse effects due to the lack of specificity.

View Article and Find Full Text PDF

Background: A surfactant protein-A-derived peptide, which we call SPA4 peptide (amino acids: GDFRYSDGTPVNYTNWYRGE), alleviates lung infection and inflammation. This study investigated the effects of intratracheally administered SPA4 peptide on systemic, lung, and health parameters in an outbred mouse strain, and in an intratracheal lipopolysaccharide (LPS) challenge model.

Methods: The outbred CD-1 mice were intratracheally administered with incremental doses of SPA4 peptide (0.

View Article and Find Full Text PDF

Purpose: Ischemic stroke is a leading cause of disability worldwide. The volume of necrotic core in affected tissue plays a major role in selecting stroke patients for thrombolytic therapy or endovascular thrombectomy. In this study, we investigated a recently reported positron emission tomography (PET) agent 2-deoxy-2-[F]fluoro-D-glucaric acid (FGA) to determine necrotic core in a model of transient middle cerebral artery occlusion (t-MCAO) in mice.

View Article and Find Full Text PDF

The objective of this study was to investigate the effect of EF24, an NF-κB-inhibitor, on the expression of negative regulators in IL-1R pathway, namely ST2 and SIGIRR. Murine JAWS II dendritic cells (DC) were challenged with lipopolysaccharide (LPS, 100 ng/ml) for 4 h, followed by treatment with 10 μM EF24 for 1 h. ST2 and SIGIRR expression was monitored by qRT-PCR and immunoblotting.

View Article and Find Full Text PDF
Article Synopsis
  • Polyethylene glycol (PEG)-phospholipid liposomes trigger non-specific immune responses due to negatively charged components at their interface; this study explores a new lipopolymer, HDAS-SHP, that may overcome these issues.
  • Post-insertion techniques revealed HDAS-SHP had a highly positive zeta potential and comparable efficiency to DSPE-PEG, but slightly less than traditional PEG variants.
  • Both HDAS-SHP and DSPE-PEG liposomes demonstrated significant leakage of their contents in serum but showed potential to suppress immune activation, suggesting HDAS-SHP could be an effective alternative for reducing immune reactions in liposome applications.
View Article and Find Full Text PDF

[N]Ammonia is commonly produced using O(p, α)N reaction but one of the limiting factor of this reaction is the relatively small nuclear cross-section at proton energies of <10 MeV. An alternative production method using C(p, n)N reaction, which has a higher nuclear cross-section at low proton energies, is more suitable for a preclinical PET imaging facility equipped with a <10 MeV cyclotron. Here, we report a novel method to produce [N]ammonia from [C]methanol for preclinical use on a 7.

View Article and Find Full Text PDF

Prostate specific membrane antigen (PSMA) is a marker for diagnosis and targeted delivery of therapeutics to advanced/metastasized prostate cancer. We report a liposome-based system for theranostic delivery to PSMA-expressing (PSMA⁺) LNCaP cells. A lipopolymer (P³) comprising of PSMA ligand (PSMAL), polyethylene glycol (PEG), and palmitate was synthesized and post-inserted into the surface of preformed liposomes.

View Article and Find Full Text PDF

The proteasome is a validated target in drug discovery for diseases associated with unusual proteasomal activity. Here we report that two diphenyldihaloketones, CLEFMA and EF24, inhibit the peptidase activity of the 26S proteasome. The objective of this study was to investigate interaction of these compounds with the proteasome and identify a putative target within the protein components of the 26S proteasome.

View Article and Find Full Text PDF

Multiorgan failure in hemorrhagic shock is triggered by gut barrier dysfunction and consequent systemic infiltration of proinflammatory factors. Our previous study has shown that diphenyldihaloketone drugs 4-[3,5-bis[(2-chlorophenyl)methylene]-4-oxo-1-piperidinyl]-4-oxo-2-butenoic acid (CLEFMA) and 3,5-bis[(2-fluorophenyl)methylene]-4-piperidinone (EF24) restore gut barrier dysfunction and reduce systemic inflammatory response in hemorrhagic shock. We investigated the effect of hemorrhagic shock on proteasome activity of intestinal epithelium and how CLEFMA and EF24 treatments modulate proteasome function in hemorrhagic shock.

View Article and Find Full Text PDF