98%
921
2 minutes
20
Biological macromolecules play a crucial role in information transmission, energy storage and structural support, and are closely related to the physiological state of living organisms. Disruption of the macromolecular homeostasis or anomalies of cellular microenvironment can precipitate cellular dysfunction, potentially leading to a spectrum of diseases including diabetes, neurodegenerative disorders, inflammatory conditions, and cancer. Consequently, aberrations in biological macromolecules have emerged as pivotal biomarkers linked to a myriad of diseases. Fluorescent molecular rotors play an essential role in imaging and analyzing biomarkers of biological macromolecules in living cells. When the rotation of fluorescent molecular rotors is restricted within biological macromolecules, the fluorescence of the probe is turned on, serving the purpose of imaging analysis. This article reviews the design principles of fluorescent molecular rotors, focusing on their application in the imaging analysis of biological macromolecules such as proteins, nucleic acids, and lipids. By elucidating their mechanisms of action and applications, it is hoped to pave a new avenue of research for researchers in various fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d5cc02923f | DOI Listing |
J Proteome Res
September 2025
State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
Shell matrix proteins (SMPs) are fundamental biological macromolecules for mollusk shell formation, yet fewer than 400 SMPs in mollusks have been previously identified, hindering our understanding of how mollusks construct and maintain their shells. Here, we identified 1689 SMPs in the Pacific oyster using three different mass spectrometry techniques, representing a significant methodological advancement in shell proteomics, enabling a 6.52-fold increase in SMP identification compared to previous studies.
View Article and Find Full Text PDFOpen Res Eur
July 2025
REQUIMTE LAQV Porto, Porto, Porto District, Portugal.
The 2024 Nobel Prizes in Chemistry and Physics mark a watershed moment in the convergence of artificial intelligence (AI) and molecular biology. This article explores how AI, particularly deep learning and neural networks, has revolutionized protein science through breakthroughs in structure prediction and computational design. It highlights the contributions of 2024 Nobel laureates John Hopfield, Geoffrey Hinton, David Baker, Demis Hassabis, and John Jumper, whose foundational work laid the groundwork for AI tools such as AlphaFold.
View Article and Find Full Text PDFNano Today
December 2025
Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA.
Nanomaterials often need to interact with proteins on the plasma membrane to get cross and access their intracellular targets. Therefore, to fully understand the cell entry mechanism, it is of vital importance to gain a comprehensive insight into the proteome at the interface when nanomaterials encounter the cells. Here, we reported a peroxidase-based proximity labeling method to survey the proteome at the nanoparticle (NP)-cell interface.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
Major in Bionano Engineering, School of Bio-Pharmaceutical Convergence, Hanyang University, Ansan, 155-88, Republic of Korea.
Membrane proteins are essential bio-macromolecules involved in numerous critical biological processes and serve as therapeutic targets for a wide range of modern pharmaceuticals. Small amphipathic molecules, called detergents or surfactants, are widely used for the isolation and structural characterization of these proteins. A key requirement for such studies is their ability to maintain membrane protein stability in aqueous solution, a task where conventional detergents often fall short.
View Article and Find Full Text PDFComput Biol Med
September 2025
Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India. Electronic address:
Antimicrobial resistance endangers global health by rapidly disseminating Multidrug-resistant (MDR) pathogens that undermine antibiotic therapies. P.aeruginosa, a high-priority ESKAPE pathogen, exemplifies the crisis with complex resistance mechanisms that demand alternative strategies beyond conventional antibiotics.
View Article and Find Full Text PDF