98%
921
2 minutes
20
Artificial stimulus-responsive membranes, particularly those responsive to different solvents, have important applications in complex and graded separation systems. Inspired by natural lipid membrane that alters mass transport behavior in response to interactions with various solvents, we report that incorporating porous graphene (PG) into graphene oxide (GO) membrane enables smart and switchable molecular sieving reversibly responsive to solvent types. The membrane shows high permeance for water and methanol, 45.52 and 13.56 L m h bar, respectively, and its molecular weight cut-off (MWCO) at ~319 g mol in water, similar to pristine GO membrane, reversibly switches to 960 g mol in methanol which is not observed in either pristine GO or graphene membrane. We accounted this switching to the change of transport pathways. In water, the GO-GO nanochannel is dominant, providing similar molecular sieving to pristine GO. In methanol, the GO-PG nanochannel becomes favorable because a strong solvent adsorption on the nanochannel surface, coupled with a weak solvent network under nanoconfinement, promotes a significant interlayer expansion, reducing the transport resistance and enabling larger, switched MWCO. This switchable sieving behavior is further demonstrated for efficient graded separation of ternary solution of solutes with various molecular weights.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12185711 | PMC |
http://dx.doi.org/10.1038/s41467-025-60680-x | DOI Listing |
Chem Commun (Camb)
September 2025
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, School of Chemical Engineering & Technology, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
Separation of ethanol-water azeotrope is extremely challenging. Here, we design and synthesize a new sulfate-pillared metal triazolate framework, which shows sieving-like separation of water/ethanol. A dynamic breakthrough verified the ultrahigh selectivity (145), and it could produce a record-breaking ethanol productivity (3.
View Article and Find Full Text PDFmBio
September 2025
Fred Hutchinson Cancer Center, Vaccine and Infectious Disease Division, Seattle, Washington, USA.
Accurate timing estimates of when participants acquire HIV in HIV prevention trials are necessary for determining antibody levels at acquisition. The Antibody-Mediated Prevention (AMP) Studies showed that a passively administered broadly neutralizing antibody can prevent the acquisition of HIV from a neutralization-sensitive virus. We developed a pipeline for estimating the date of detectable HIV acquisition (DDA) in AMP Study participants using diagnostic and viral sequence data.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
The aluminum electrolysis industry generates massive greenhouse gas emissions dominated by CO and perfluorocarbons (PFCs, CF/CF), presenting dual challenges of climate impact and resource waste. Here, we report a robust nickel-based metal-organic framework (SIFSIX-3-Ni) featuring confined square channels (3.55 Å) that achieves the molecular-sieving separation of CO from CF/CF mixtures.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States.
Lithium-sulfur batteries (LSBs) are extensively researched for their high energy densities but are hindered by the lithium polysulfide (LiPS) shuttling effect, which results in poor cyclability. A popular mitigation strategy is separator modification, where a LiPS trapping material is slurry-coated onto a conventional microporous polypropylene (PP) separator. This additional mass and volume unfortunately compromise the overall energy density of the LSB.
View Article and Find Full Text PDFLangmuir
September 2025
Key Laboratory of Oil & Gas Fine Chemicals, Xinjiang University, Urumqi 830046, China.
The disposal and management of coal gangue (CG) waste from coal mining pose significant environmental pollution challenges. Here, we propose utilizing CG as raw material to synthesize CG-based NaA-type molecular sieves (CG@NaA MS) through a high-temperature alkali fusion combined with a hydrothermal process. This approach enables the sustainable treatment of copper ions and methylene blue (MB) in wastewater.
View Article and Find Full Text PDF