98%
921
2 minutes
20
Herein, we report a UiO-67-type metal-organic framework as an efficient photocatalyst for the selenyltrifluoromethylation of terminal alkynes. The CF• radical species can be effectively stabilized within the confined space of UiO-67-Ru, which contributes to the superior -selectivity and catalytic activity. Furthermore, the -selectivity of the obtained ()-α,β-unsaturated selenotrifluoromethyl compounds is well elucidated by means of density functional theory (DFT) calculations and canonical Monte Carlo (CMC) simulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.5c01983 | DOI Listing |
J Am Chem Soc
September 2025
Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China.
In contrast to metal ions that have been routinely used to construct metal-organic frameworks (MOFs), anions have rarely been used as essential coordination centers in supramolecular organic frameworks (SOFs). In this work, we present a SOF, , based on the coordination of chloride anions and a flexible oligopyrrole. Owing to the multiple interactions between individual oligopyrrole molecules and an A-B-C-style stacking of the 2D honeycomb layers, crystalline exhibits reasonable thermal stability and retains its structure upon desolvation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.
The development of high-performance, cost-effective non-noble metal catalysts for the oxygen evolution reaction (OER) is critical to advancing sustainable hydrogen production via water electrolysis. Herein, we report a facile and mild strategy for synthesizing amorphous bimetallic organic framework materials (NiFe-MOFs) using pyridine-modified threonine (l-PyThr) as an organic ligand. The optimized NiFe-PyThr-4:1 catalyst exhibits remarkable OER activity, requiring low overpotentials of only 162 and 222 mV to achieve current densities of 10 and 100 mA cm, respectively, along with a small Tafel slope of 34.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
Metal-organic frameworks (MOFs) are distinguished by their structural diversity, tunable electronic properties, and exceptional performance in various applications. Notably, the electron-donating ability of ligands significantly enhances the ligand-to-metal charge transfer (LMCT) processes within these frameworks, thereby promoting efficient charge migration. Herein, we developed two electron-rich macrocyclic ligands derived from phenothiazine- and phenoxazine-functionalized calix[3]arenes, alongside their corresponding cobalt-coordinated MOFs.
View Article and Find Full Text PDFLangmuir
September 2025
Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, Montana 59717, United States.
Global challenges posed by freshwater scarcity and the water-energy nexus drive demand for novel macromolecular design of tailored nanostructures endowed with a variety of hydrophilic and hydrophobic features. Offering potential to meet this demand, metal-organic framework (MOF) materials are synthesized from coordinated formations that create versatile reticular structures with variable water adsorption affinities. However, advances in the fundamental understanding of water interactions within these structures are impeded by the failure of classical analyses to identify mechanisms of interaction, connect fundamental isotherm types, and provide appropriate benchmarks for assessment.
View Article and Find Full Text PDFAnal Chem
September 2025
RUSA-Center for Advanced Sensor Technology, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar (Aurangabad), Maharashtra 431 004, India.
In this study, a one-pot hydrothermal synthesis method was used to synthesize a novel gold-yttrium trimesic acid metal-organic framework (Au-Y-TMA MOF), demonstrating significant improvements over conventional single-metal MOFs, that is, yttrium trimesic acid (Y-TMA), in both supercapacitor applications and electrochemical antibiotic detection. The X-ray diffraction patterns of Au-Y-TMA confirmed the presence and impact of Au in the Y-TMA matrix, while field emission scanning electron microscopy (FE-SEM) images revealed a heterogeneous combination of gold nanoparticles (AuNPs) and Y-TMA, suggesting a nonuniform distribution and possible interaction. The developed half-cell supercapacitor exhibited a remarkable capacitance value of 1836 F/g at a current density of 5 A/g by galvanostatic charging-discharging (GCD) measurement.
View Article and Find Full Text PDF