Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Olfactory impairment is a recognized early indicator of neurodegenerative diseases (NDs), such as Alzheimer's disease (AD). Intracellular aggregates of hyperphosphorylated tau protein, referred to as neurofibrillary tangles (NFTs), are a hallmark of AD. NFTs are found in the olfactory bulb (OB) and entorhinal cortex (EC), both crucial for processing olfactory information. We explored the hypothesis that typical tau lesions could appear early and progress along olfactory regions to reach connected areas critically affected in AD (e.g., EC and hippocampal formation). To that end, we used transgenic PS19 mice expressing mutated human tau protein (1N4R isoform, P301S mutation). They recapitulate major phenotypes of AD, such as accumulation of NFTs, synaptic dysfunction, cognitive impairment, and neuronal loss. The presence of pathological hyperphosphorylated human tau protein (pTau) was monitored in olfactory regions: olfactory epithelium (OE), OB, piriform cortex (PC), and in connected regions of the hippocampal formation (hippocampus and EC). pTau was detected in the OE's middle stratum and in the OB's olfactory nerve layer (ONL) at 1.5 months. At 6 months of age, tau accumulations were found in the PC and EC, along with the CA3 region and dentate gyrus of the hippocampus. We found that olfactory function remained unaffected in PS19 mice, despite the presence of tau pathology in key regions of the olfactory system. Targeted treatments (ZnSO and AAVs) were applied at the OE level to assess the impact on tau pathology in the CNS. Complete stripping of the OE by intranasal administration of ZnSO led to a significant reduction in pretangle-like tau pathology within the PC, amygdala, and EC of 6-month-old PS19 mice. Finally, we observed in human postmortem samples that pTau signal was present in the olfactory regions (OE and OB) of patients at early Braak stages (I/II). Based on these observations, we propose that pTau could appear, due to aging or environmental agents, in the OE and subsequently spread in a prion-like manner to the hippocampal formation along neuroanatomical connections. These findings also indicate the interest of the OE as a target for intervention aimed at mitigating the progression of tauopathy in the CNS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12179005PMC
http://dx.doi.org/10.1007/s00401-025-02902-6DOI Listing

Publication Analysis

Top Keywords

tau protein
12
olfactory regions
12
hippocampal formation
12
ps19 mice
12
tau pathology
12
olfactory
11
tau
9
olfactory epithelium
8
human tau
8
regions olfactory
8

Similar Publications

Traumatic brain injuries (TBIs) are a risk factor for Alzheimer's disease (AD), and share several important pathological features including the development of neurofibrillary tangles (NFT) of tau protein. While this association is well established, the underlying pathogenesis is poorly defined and current treatment options remain limited, necessitating novel methods and approaches. In response we developed "TBI-on-a-chip", an trauma model utilizing murine cortical networks on microelectrode arrays (MEAs), capable of reproducing clinically relevant impact injuries while providing simultaneous morphological and electrophysiological readout.

View Article and Find Full Text PDF

Background: Soil salinization represents a critical global challenge to agricultural productivity, profoundly impacting crop yields and threatening food security. Plant salt-responsive is complex and dynamic, making it challenging to fully elucidate salt tolerance mechanism and leading to gaps in our understanding of how plants adapt to and mitigate salt stress.

Results: Here, we conduct high-resolution time-series transcriptomic and metabolomic profiling of the extremely salt-tolerant maize inbred line, HLZY, and the salt-sensitive elite line, JI853.

View Article and Find Full Text PDF

Clinical Alzheimer's disease is currently characterized by cerebral β-amyloidosis associated with cognitive impairment. However, most cases of Alzheimer's disease are associated with multiple neuropathologies at autopsy. The peripheral protein changes associated with these disease endophenotypes are poorly understood.

View Article and Find Full Text PDF

Mitochondrial dysfunction is a shared hallmark of neurodegenerative disorders, including Alzheimer's disease (AD) and tauopathies among others. Pathological alterations of the microtubule-associated protein Tau can disrupt mitochondrial dynamics, transport, and function, ultimately leading to neuronal toxicity and synaptic deficits. Understanding these processes is crucial for developing therapeutic interventions.

View Article and Find Full Text PDF

Axonal degeneration in hemorrhagic stroke: a systematic review.

Pharmacol Res

September 2025

University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, Vienna, Austria. Electronic address:

Hemorrhagic stroke occurs due to a rupture of a blood vessel in the brain. This leads to initial mechanical damage at the site of injury and secondary injuries including axonal degeneration (AxD). Since axons are critical for all brain functions, we systematically reviewed studies that focused on axonal degeneration in two major types of hemorrhagic stroke, intracerebral hemorrhage and subarachnoid hemorrhage, to understand how and to what extent AxD develops and to interrogate underlying mechanisms and potential therapeutic targets.

View Article and Find Full Text PDF