Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: To examine phenotypic and genetic associations between myopia and various brain volumes using the UK Biobank database.

Methods: After 1:1 propensity score matching (PSM) between participants with myopia and healthy controls, the relationship between myopia and brain volumes was examined using general linear regression, with adjustments for covariates including age, sex, ethnicity, Townsend Deprivation Index, lifestyle factors, and disease status. Bonferroni correction was applied for multiple comparisons. Bidirectional Mendelian randomization (MR) and genetic risk score (GRS) were used to assess genetic associations.

Results: After Bonferroni correction, general linear regression revealed that myopia was significantly associated with reduced total brain volume (β, -0.07 mL; 95% confidence interval [CI], -0.11 to -0.03) and white matter volume (β, -0.08 mL; 95% CI, -0.13 to -0.03) in the fully adjusted model. Education significantly modified the myopia-gray matter association, with a stronger negative correlation in individuals without a college education (β, -0.09 mL; 95% CI, -0.15 to -0.04). MR analysis indicated no obvious causal effect of myopia on brain volumes, and GRS analysis revealed only a slight decreasing trend in total brain volume with increasing genetic risk for myopia (P value for trend < 0.05).

Conclusions: Although myopia shows phenotypic associations with brain volumes, including total brain and white matter, and particularly with gray matter in individuals with lower education, genetic analysis (MR and GRS) did not support a causal or genetic link with brain volumes. These findings suggest that residual confounding factors beyond education level may underlie the observed associations between myopia and brain volumes, underscoring the need for further research to elucidate these relationships.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12180605PMC
http://dx.doi.org/10.1167/iovs.66.6.57DOI Listing

Publication Analysis

Top Keywords

brain volumes
28
myopia brain
20
associations myopia
12
total brain
12
brain
10
genetic analysis
8
myopia
8
general linear
8
linear regression
8
bonferroni correction
8

Similar Publications

Parasagittal dural space and arachnoid granulations morphology in pre-clinical and early clinical multiple sclerosis.

Mult Scler

September 2025

Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, VA Medical Center, TN Valley Healthcare System, Nashville, TN, USA.

Background: There is limited knowledge on the post-glymphatic structures such as the parasagittal dural (PSD) space and the arachnoid granulations (AGs) in multiple sclerosis (MS).

Objectives: To evaluate differences in volume and macromolecular content of PSD and AG between people with newly diagnosed MS (pwMS), clinically isolated syndrome (pwCIS), or radiologically isolated syndrome (pwRIS) and healthy controls (HCs) and their associations with clinical and radiological disease measures.

Methods: A total of 69 pwMS, pwCIS, pwRIS, and HCs underwent a 3.

View Article and Find Full Text PDF

Surgical outcomes from haematoma evacuation for intracerebral haemorrhage in the INTERACT3 study.

Lancet Reg Health West Pac

September 2025

Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China.

Background: There is ongoing controversy as to whether surgical intervention to haematoma evacuation benefits patients with acute intracerebral haemorrhage (ICH). This study aimed to evaluate the association of surgical intervention to evacuate the haematoma and 6-month functional outcome in participants of the third Intensive Care Bundle with Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT3).

Methods: This was a secondary analysis of INTERACT3, which enrolled adults (age ≥18 years) spontaneous ICH patients within 6 h after onset.

View Article and Find Full Text PDF

Background: Previous studies indicate that hippocampal (subfield) and amygdala volumes may correlate with specific cognitive functions, coping strategies and emotion regulation. Here, we investigated associations between emotional processing and volumes of hippocampal subfields and amygdala. We focused on depressed patients since emotional dysregulation and hippocampal volume shrinkage are characteristic of them.

View Article and Find Full Text PDF

Background: This study investigates structural abnormalities in hippocampal subfield volumes and shapes, and their association with plasma CC chemokines in individuals with major depressive disorder (MDD).

Methods: A total of 61 patients with MDD and 65 healthy controls (HC) were recruited. All participants underwent high-resolution T1-weighted imaging and provided blood samples for the detection of CC chemokines (CCL2, CCL7, and CCL11).

View Article and Find Full Text PDF