Machine Learning Force Fields in Electrochemistry: From Fundamentals to Applications.

ACS Nano

Toyota Central R&D Laboratories., Inc., Nagakute 480-1192, Aichi, Japan.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This article reviews the foundations and applications of machine learning force fields (MLFFs) in electrochemistry, highlighting their role as a transformative tool in materials science. We first provide an overview of MLFFs, then discuss their applications in ionics and electrochemical reactions, and finally outline future directions. Most MLFF approaches use invariant or equivariant descriptors derived from body-order expansions to represent many-body atomic interactions. These descriptors feed into linear regression models, kernel methods, or neural networks to construct potential energy surfaces for gases, liquids, solids, and interfaces involving inorganic and organic materials. MLFFs have enabled a wide range of advances, including all-atom molecular dynamics (MD), data extraction from MD, and accelerated materials discovery. In MD simulations, MLFFs allow accurate evaluation of ionic conductivity via the fluctuation-dissipation theorem and nonequilibrium MD under electric fields, applied to both solid and polymer electrolytes. For electrochemical reactions, MLFFs and Δ-ML models have been used to predict redox potentials in homogeneous and interfacial systems through thermodynamic integration. MLFFs also enable the extraction of key thermodynamic and kinetic information-such as free energy landscapes and local transport coefficients-from atomic trajectories, facilitating coarse-grained modeling of mass transport and reactions in complex electrolytes. In materials discovery, MLFFs have allowed high-throughput screening of 10 to 10 crystal structures, leading to the identification of promising Li-ion and Na-ion solid electrolytes. MLFFs are expected to continue evolving as a core technology in computational materials science, spanning a wide range from high-precision calculations to large-scale materials exploration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12224340PMC
http://dx.doi.org/10.1021/acsnano.5c05553DOI Listing

Publication Analysis

Top Keywords

machine learning
8
learning force
8
force fields
8
mlffs
8
materials science
8
electrochemical reactions
8
wide range
8
materials discovery
8
materials
6
fields electrochemistry
4

Similar Publications

Driven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.

View Article and Find Full Text PDF

Study Objective: Accurately predicting which Emergency Department (ED) patients are at high risk of leaving without being seen (LWBS) could enable targeted interventions aimed at reducing LWBS rates. Machine Learning (ML) models that dynamically update these risk predictions as patients experience more time waiting were developed and validated, in order to improve the prediction accuracy and correctly identify more patients who LWBS.

Methods: The study was deemed quality improvement by the institutional review board, and collected all patient visits to the ED of a large academic medical campus over 24 months.

View Article and Find Full Text PDF

Background: In-hospital cardiac arrest (IHCA) remains a public health conundrum with high morbidity and mortality rates. While early identification of high-risk patients could enable preventive interventions and improve survival, evidence on the effectiveness of current prediction methods remains inconclusive. Limited research exists on patients' prearrest pathophysiological status and predictive and prognostic factors of IHCA, highlighting the need for a comprehensive synthesis of predictive methodologies.

View Article and Find Full Text PDF

Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.

View Article and Find Full Text PDF

Objective: To explore B cell infiltration-related genes in endometriosis (EM) and investigate their potential as diagnostic biomarkers.

Methods: Gene expression data from the GSE51981 dataset, containing 77 endometriosis and 34 control samples, were analyzed to detect differentially expressed genes (DEGs). The xCell algorithm was applied to estimate the infiltration levels of 64 immune and stromal cell types, focusing on B cells and naive B cells.

View Article and Find Full Text PDF