98%
921
2 minutes
20
Introduction: Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by colonic mucosal inflammation and ulceration. This study investigates the therapeutic effects of homoplantaginin (Homo), a flavonoid derived from R. Brown, on dextran sulfate sodium (DSS)-induced colitis in mice, as well as its underlying mechanisms of action.
Methods: In this study, a mouse colitis model was established using DSS to assess the remission effect of Homo on colitis mice. Quantitative reverse transcription PCR (qRT-PCR) was employed to investigate the impact of Homo on intestinal mucosal barrier and pro-inflammatory cytokines in mice. The possible target genes of Homo were analyzed and screened using bioinformatics and molecular docking approaches. Microscale Thermophoresis (MST) technique was employed to examine the binding interaction between Homo and its target gene, matrix metalloproteinase 9 (MMP9). Finally, the combination of Homo and MMP9 inhibitors was utilized to verify whether Homo alleviates DSS-mediated colitis in mice through modulation of MMP9.
Results: Homo (50 mg/kg) significantly alleviated colitis symptoms, lowered myeloperoxidase (MPO) activity, and improved histopathological outcomes. qRT-PCR analysis revealed that Homo inhibited the expression of pro-inflammatory cytokines (TNF-, IL-1β, IL-6 and IFN-) and related molecules, highlighting its anti-inflammatory properties. Additionally, Homo strengthened the intestinal mucosal barrier by regulating barrier protein expression. Bioinformatics analysis identified that MMP9 as a potential target of Homo, while molecular docking and MST analysis revealed a dose-dependent inhibition of MMP9. Moreover, the MMP9/Relaxin 2 (RLN2) signaling pathway was implicated in Homo's effects, as evidenced by the upregulation of RLN2 mRNA upregulation and its interaction with MMP9. The combination of the MMP9 inhibitor IN-1 with Homo demonstrated no synergistic effect, it confirmed the role of the MMP9-RLN2 axis in colitis modulation.
Conclusion: Homo demonstrates significant potential in alleviating colitis through targeting the MMP9-RLN2 signaling pathway, warranting further clinical investigation in UC treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12171287 | PMC |
http://dx.doi.org/10.3389/fmed.2025.1582066 | DOI Listing |
Acta Biochim Biophys Sin (Shanghai)
September 2025
State Key Laboratory of Analytical Chemistry for Life Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China.
Dysregulated transcription factors critically link chronic inflammation to oncogenesis in colitis-associated colorectal cancer (CAC), but their mechanistic roles remain incompletely understood. By integrating microarray and transcriptome sequencing data from ulcerative colitis (UC), colitis-associated cancer (CAC), and colorectal cancer (CRC) patients, we identify C/EBPβ as a key transcriptional regulator whose elevated expression inversely correlates with survival. In azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced CAC models, intestinal epithelial C/EBPβ is upregulated during tumor progression, which is correlated with exacerbated tumor burden and neutrophil infiltration.
View Article and Find Full Text PDFFood Res Int
November 2025
College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:
Flammulina velutipes is a major edible fungus with abundant yield and mature industrial production technology. Its main functional component, Flammulina velutipes polysaccharide, has huge development and utilization value. In light of the current uncertainty regarding the mechanisms by which Flammulina velutipes polysaccharides prevent colonic cell pyroptosis, the mechanisms of ultrasound-extracted Flammulina velutipes polysaccharide (FVPU2) in inhibiting colonic cell pyroptosis in mice were investigated, and compared with Flammulina velutipes polysaccharide extracted via hot water extraction (FVPH2).
View Article and Find Full Text PDFFood Res Int
November 2025
Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China. Electronic address:
Inflammatory bowel disease (IBD) encompasses two main conditions: Crohn's disease and ulcerative colitis. The role of foodborne pathogens, often transmitted through contaminated food, is a subject of ongoing research regarding their potential involvement in IBD. The most common foodborne pathogens S.
View Article and Find Full Text PDFGut Microbes
December 2025
Cancer Research Laboratory, Chengde Medical College, Chengde, Hebei, China.
Genetic predisposition and environmental factors, including psychological stress, play prominent roles in driving the development and progression of colorectal neoplasms. However, the mechanisms through which chronic stress drives the progression of colorectal neoplasm remain unclear. The gut microbiota is closely linked to chronic psychological stress (chronic stress) and colorectal neoplasms.
View Article and Find Full Text PDFNat Immunol
September 2025
Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
Crohn's disease pathology is modeled in TNF mice that overproduce tumor necrosis factor (TNF) to drive disease through TNF receptors. An alternative ligand for TNF receptors, soluble LTα, is produced by B cells, but has received scarce attention because LTα also partners with LTβ to generate membrane-tethered LTαβ that promotes tertiary lymphoid tissue-another feature of Crohn's disease. We hypothesized that B cell-derived LTαβ would critically affect ileitis in TNF mice.
View Article and Find Full Text PDF