Estimating physical conditions supporting gradients of ATP concentration in the eukaryotic cell.

Biophys J

Department of Mathematics, University of Bergen, Bergen, Norway; Computational Biology Unit, University of Bergen, Bergen, Norway. Electronic address:

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The ATP molecule serves as an energy currency in eukaryotes (and all life), providing the energy needed for many essential cellular processes. But the extent to which substantial spatial differences exist in ATP concentration in the cell remains incompletely known. It is variously argued that ATP diffuses too quickly for large gradients to be established, or that the high rates of ATP production and use (sources and sinks) can support large gradients even with rapid diffusion-and microscopic models and detailed experiments in different specific cases support both pictures. Here, we attempt a mesoscopic investigation, using reaction-diffusion modeling in a simple biophysical picture of the cell to attempt to ask, generally, which conditions cause substantial ATP gradients to emerge within eukaryotic cells. If ATP sources (like mitochondria) or sinks (like the nucleus) are spatially clustered, large fold changes in concentration can exist across the cell; if sources and sinks are more spread, then rapid diffusion indeed prevents large gradients from being established. This dependence holds in model cells of different sizes, suggesting its generality across cell types. Our theoretical work will complement developing intracellular approaches exploring ATP concentration inside eukaryotic cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpj.2025.06.016DOI Listing

Publication Analysis

Top Keywords

atp concentration
12
large gradients
12
atp
8
gradients established
8
sources sinks
8
eukaryotic cells
8
gradients
5
cell
5
estimating physical
4
physical conditions
4

Similar Publications

This study comprehensively evaluated the antimicrobial efficacy and mechanisms of ε-polylysine (ε-PL) against Yersinia enterocolitica (Y. enterocolitica) contamination in pre-prepared meat products. Surveillance data from retail pork and beef samples collected in Xi'an, China (May 2024 to April 2025) revealed a 50.

View Article and Find Full Text PDF

Tire wear particles (TWP) represent a significant source of marine microplastic pollution and have been shown to pose a considerable threat to marine organisms. In this study, the marine rotifer Brachionus plicatilis was employed as a model organism to systematically assess the effects of micron-sized and nano-sized TWP, as well as their leachates, on rotifer behavior, and underlying molecular mechanisms. The results revealed that TWP exposure significantly reduced rotifer motility, evidenced by decreased swimming speed and acceleration.

View Article and Find Full Text PDF

3-O-acetylrubiarbonol B preferentially targets EGFR and MET over rubiarbonol B to inhibit NSCLC cell growth.

PLoS One

September 2025

Department of Biomedicine, Health and Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan, Republic of Korea.

Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related deaths, remaining a significant challenge in terms of early detection, effective treatment, and improving patient survival rates. In this study, we investigated the anticancer mechanism of rubiarbonol B (Ru-B) and its derivative 3-O-acetylrubiarbonol B (ARu-B), a pentacyclic terpenoid in gefitinib (GEF)-sensitive and -resistant NSCLC HCC827 cells. Concentration- and time-dependent cytotoxicity was observed for both Ru-B and ARu-B.

View Article and Find Full Text PDF

Recent research has shown that KATP channels in mouse taste bud cells enhance glucose taste signaling by depolarizing the cell when ATP is present. Relatedly, estradiol has been shown to enhance glucose sensing in human pancreatic β cells via closure of KATP channels. Since taste tissue has estradiol receptors, we linked these two observations and tested whether elevated estradiol may also enhance taste sensitivity and liking for glucose in humans.

View Article and Find Full Text PDF

Background: Massive hemorrhage is a leading cause of mortality among trauma patients. To date, whole blood (WB) remains the preferred resuscitation fluid on the battlefield and in pre-hospital emergency care. However, components of WB inevitably undergo storage-related damage, and differences in the duration of storage may lead to varying clinical outcomes after transfusion.

View Article and Find Full Text PDF