98%
921
2 minutes
20
Genomic rearrangements and instability are key pathological features of multiple myeloma (MM). However, the origins of DNA damage in MM and its impact on disease progression remain incompletely understood. Here, we screened DNA damage repair (DDR) genes from single-cell RNA sequencing and bulkRNA-seq datasets using WGCNA and differential expression analysis. A prognostic model was constructed, demonstrating that patients in high DDR expression group had poor outcomes in both the training and validation cohorts. The nomogram also indicated that DDR-related risk scores had good predictive performance. Then, the differences of immune infiltration and mutation landscape between low and high DDR group were investigated. PARP1, PCNA, and RAD23A were identified as key DDR-related genes in MM. Additionally, we explored the drug sensitivity and potential molecular mechanisms associated with each key gene. Altogether, the DDR-related prognostic risk model in MM may facilitate risk stratification and guide treatment decisions, with key prognostic genes might potentially serving as biomarkers and therapeutic targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dnarep.2025.103857 | DOI Listing |
Inflamm Res
September 2025
Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
Cardiovascular diseases (CVDs) are a group of conditions that significantly affect human health and are among the leading causes of death and disability worldwide. Clinical trials and basic research have demonstrated that inflammation plays a pivotal role in the development of CVDs. The inflammasome is a critical component of the innate immune system, involved in various inflammatory responses to pathogens and tissue damage.
View Article and Find Full Text PDFResearch (Wash D C)
September 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, characterized by a high propensity for metastasis, poor prognosis, and limited treatment options. Research has demonstrated a substantial correlation between the expression of protein arginine N-methyltransferase 1 (PRMT1) and enhanced proliferation, metastasis, and poor outcomes in TNBC. However, the specific role of PRMT1 in lung metastasis and chemoresistance remains unclear.
View Article and Find Full Text PDFBiomed Rep
November 2025
Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan.
Cell senescence is a state of stable proliferation arrest characterized by morphological changes and high senescence-associated β-galactosidase (SA-β-gal) activity. Inducing senescence in cancer cells is beneficial for cancer therapy due to proliferation arrest, however, the mechanisms underlying this process remain insufficiently understood. Therefore, the present study investigated the mechanisms of radiation-induced cellular senescence in A549 human lung cancer cells, focusing on the DNA damage response and cell cycle regulation.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
Navy Special Medical Centre, Second Military Medical University, Shanghai, China.
Radiation exposure initiates a cascade of reactions, including the release of reactive oxygen species, DNA double-strand breaks, and cellular apoptosis, leading to cell death, tissue damage, and potentially the development of cancer. Consequently, there is an urgent need to develop highly effective and low-toxicity radioprotective agents. Traditional chemically synthesized protective agents face significant limitations in clinical applicability due to their pronounced off-target toxicity, narrow therapeutic window, and high production costs.
View Article and Find Full Text PDFEco Environ Health
September 2025
Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China.
Waterborne viruses have caused outbreaks of related diseases and threaten human health, and advanced oxidation processes (AOPs), as clean and efficient technologies, have received widespread attention for their excellent performance in inactivating viruses. However, heterogeneity in susceptibility of structurally distinct viruses to various reactive oxygen species (ROS) is unclear. This study first measured the heterogeneity in inactivation kinetics and biological mechanisms of four typical viral surrogates (MS2, phi6, phix174, and T4) to various ROS by visible light catalysis.
View Article and Find Full Text PDF