Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Breast cancer (BC) remains a critical global health challenge, necessitating ultrasensitive methods for detecting biomarkers such as miR-155, a key regulator in BC progression. Here, we present a mutually activated dual-exponential amplification DNA machine (MADEA-DNA machine) for ultrasensitive miR-155 detection. This system integrates exponential rolling circle amplification (E-RCA) and autocatalytic incremental strand displacement amplification (AI-SDA), driven by a bidirectional activation mechanism. Target miR-155 initiates E-RCA via a functional primer probe (FPP) or AI-SDA through a functional hairpin probe (FHP), with amplification products cross-activating the counterpart system to establish a self-reinforcing loop. The resultant amplicons further activate CRISPR/Cas12a, enabling the trans-cleavage of fluorescent reporters for signal amplification. The MADEA-DNA machine achieves a detection limit of 1.26 fM, with a dynamic range spanning 5 fM-10 nM, and demonstrates exceptional specificity against mismatched and nontarget miRNAs. Validation in human serum revealed significantly elevated miR-155 levels in BC patients versus healthy donors, corroborated by qRT-PCR. This system combines machine-like operational efficiency, dual-amplification synergy, and CRISPR-enhanced sensitivity, offering a robust platform for liquid biopsy applications in early BC diagnostics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.5c01953 | DOI Listing |