Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Photonic defect modes are explored as a viable alternative to standard photonic band edge modes in photonic crystal applications, especially due to their typically high Q-factors and local density of states. For example, they can be used in nonlinearity enhancement, lasing, and cavity quantum electrodynamics. However, they are strongly dependent on any structural change and need to be well-controlled to ensure the desired resonance frequency. Here, we present a study of the photonic defect modes that appear in a structure where a layer of isotropic material is embedded between two layers of cholesteric liquid crystal (CLC), using full electrodynamics numerical simulations. We present typical transmission spectra and electric field profiles of selected defect modes and then analyze the influence of geometrical and material parameters on the eigenfrequencies and Q-factors of the modes within and around the photonic bandgap, including refractive indices and thicknesses of isotropic and liquid crystal layers, and different anchoring orientations at the boundaries of the isotropic defect layer. Additionally, a connection of such defect modes to previously extensively analyzed twist defect modes is given. Eigenmodes in asymmetric resonators are also presented, where CLC layers surrounding the intermediate isotropic layer are not equally thick, enabling biasing of specific directional light emission. More generally, this work aims to contribute to the understanding and design capability in topological soft matter photonics where defect mode lasing could be realized in CLC geometries with different singular and solitonic topological defect structures.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.535293DOI Listing

Publication Analysis

Top Keywords

defect modes
24
photonic defect
12
liquid crystal
12
modes
8
cholesteric liquid
8
defect
8
modes photonic
8
photonic
6
isotropic
5
modes cholesteric
4

Similar Publications

Long-Term Functional Outcomes and Modes of Failure of Fresh Frozen Hemicondylar Allografts: A Retrospective Cohort Study.

J Surg Oncol

September 2025

Orthopedic Oncology Service, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Background: Hemicondylar fresh frozen allografts address partial knee defects while preserving native anatomy and bone stock. This study evaluated long-term survival, failure modes, and functional outcomes following hemicondylar reconstruction.

Methods: We conducted a retrospective analysis of hemicondylar fresh frozen allograft reconstructions.

View Article and Find Full Text PDF

Plasticity Mechanisms in Nanostructured Cubic Boron Nitride: Internal Defects and Amorphous Layers.

ACS Appl Mater Interfaces

September 2025

School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.

Nanostructured cubic boron nitride (NS-cBN) has attracted significant attention due to its high hardness and excellent thermal stability, yet a systematic strategy to balance strength and toughness through atomically structural design remains elusive. Here, we integrate plasticity theory with large-scale atomistic simulations to elucidate the size-dependent roles of internal defects, i.e.

View Article and Find Full Text PDF

Breaking through Hydration Layer Barrier: a Novel Ultra-Strong Underwater Hydrogel Adhesive Toward Full-Thickness Cartilage Repair.

Adv Healthc Mater

September 2025

Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.

The absence of blood vessels and nerves in cartilage severely restricts its self-healing capacity. Meanwhile, the inherent anti-adhesive nature of articular cartilage matrix further complicates the integration of implanted scaffolds, leading to common issues such as scaffold displacement, reduced mechanical stability, impaired cell migration, and insufficient tissue regeneration. These challenges collectively render articular cartilage repair a formidable global issue.

View Article and Find Full Text PDF

Halide perovskites (HPs) are gaining significant attention in data storage, particularly for their application in resistive random-access memory (ReRAM) systems. Their exceptional electrical and light absorption properties position them as potentially revolutionary materials for the memory industry. The use of HPs as resistive switching (RS) materials in ReRAMs is driven by their observed current-voltage hysteresis.

View Article and Find Full Text PDF

Vacancy defects in two-dimensional (2D) materials are not merely structural imperfections but can be strategically engineered to boost and tailor their intrinsic properties. In this work, we propose a novel 2D polymorph of phosphorene, featuring a periodic array of vacancy-derived pentagon-octagon-pentagon (p-o-p) units in blue phosphorene, employing first-principles calculations combined with quasi-particle GW method. Structural optimization, positive phonon modes, mechanical resilience, and thermal stability up to 800 K collectively confirm its structural robustness, flexibility, and potential for experimental realization.

View Article and Find Full Text PDF