98%
921
2 minutes
20
Electronic manipulation of boron centers in polycyclic aromatic hydrocarbon (PAHs) frameworks often leads to unique redox and photophysical properties. Herein, we report the first isolation and redox investigation of carbene-stabilized 6,12-diboraanthanthrenes 3/4 with electron-rich boron centers. Combining experimental and theoretical studies confirms that 3/4 exhibits a closed-shell singlet ground state and strong global aromaticity. Oxidation of 3/4 with TEMPO led to the oxidized product 5. Furthermore, the reversible one or two-electron oxidation process for 3/4 has been confirmed by cyclic voltammetry. Sequential oxidation of 3/4 with AgSbF results in the isolable radical monocations 6/7, and dications 8/9. The radical character of 6/7 is confirmed by multi-line EPR spectra, with the hyperfine coupling splitting mainly attributed to the two boron nuclei. As rare diboron-doped dicationic PAHs, 8/9 display bright yellowish fluorescence. Reduction of 3/4 with 2 equivalents of KC leads to the formation of the dianionic species 10/11, where the carbene ligands are initially reduced and subsequently reconstructed, confirming the electron-rich nature of boron centers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12152737 | PMC |
http://dx.doi.org/10.1039/d5sc02449h | DOI Listing |
Inorg Chem
September 2025
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
The photocatalytic reduction of carbon dioxide (CO) to chemicals holds significant importance for mitigating the current energy crisis. Rational design of catalytic centers within well-defined structures can effectively enhance the reaction activity and selectivity. In this study, we constructed interrupted zeolitic boron imidazolate frameworks (BIFs) featuring unsaturated coordination at the central Co ion.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada.
The processes of thermoforming 2D-printed electronics into 3D structures can introduce defects that impact the electrical performance of conductors, making them more susceptible to thermal failure during high electrical power/current applications on temperature-sensitive substrates. We therefore report the use of a thin-film boron nitride nanotube (BNNT) interlayer to directly reduce heat stress on linear and serpentine metallic traces on polycarbonate substrates thermoformed to 3D spherocylindrical geometries at varying elongation percentages. We demonstrate that the BNNT interlayer helps to improve the electrical conductivity of highly elongated thermoformed 3D traces in comparison to traces on bare polycarbonate.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
Incorporating atomically thin two-dimensional (2D) materials with optical fibers expands their potential for optoelectronic applications. Recent advancements in chemical vapor deposition have enabled the batch production of these hybrid fibers, paving the way for practical implementation. However, their functionality remains constrained by the integration of a single 2D material, restricting their versatile performance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.
Nanostructured cubic boron nitride (NS-cBN) has attracted significant attention due to its high hardness and excellent thermal stability, yet a systematic strategy to balance strength and toughness through atomically structural design remains elusive. Here, we integrate plasticity theory with large-scale atomistic simulations to elucidate the size-dependent roles of internal defects, i.e.
View Article and Find Full Text PDFNano Lett
September 2025
Center for 2D Quantum Heterostructures, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea.
Ultrathin amorphous materials are promising counterparts to 2D crystalline materials, yet their properties and functionalities remain poorly understood. Amorphous boron nitride (aBN) has attracted attention for its ultralow dielectric constant and superior manufacturability compared with hexagonal boron nitride. Here, we demonstrate wafer-scale growth of ultrathin aBN films with exceptional thickness and composition uniformity using capacitively coupled plasma-chemical vapor deposition (CCP-CVD) at 400 °C.
View Article and Find Full Text PDF