98%
921
2 minutes
20
Cytosine DNA methylation (5mCs) is an important epigenetic modification in genomic research. However, the methylation states of some cytosine sites are not available due to the limitations of different studies, and there are few tools developed to deal with this problem, especially in plants, which have more methylation types than animals. Here, we report PlantDeepMeth, a novel deep learning model that utilizes deep learning to predict DNA methylation states in plants. The evaluation of PlantDeepMeth on known cytosine sites in both the and genomes shows good performance in predicting methylation states, indicating that the tool is good at learning patterns for methylation imputation. Motif analysis of the model's predictions identified specific motifs associated with hypo- or hyper-methylation states in and , further revealing key regulatory patterns captured by the model. Moreover, cross-species validation between and demonstrated the generalizability of PlantDeepMeth, with the model maintaining high performance across different plant species. These results highlight the effectiveness of PlantDeepMeth and demonstrate the potential of deep learning to advance plant genomics research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12157073 | PMC |
http://dx.doi.org/10.3390/plants14111724 | DOI Listing |
Driven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Computer Science, COMSATS University Islamabad, Sahiwal, Pakistan.
The widespread dissemination of fake news presents a critical challenge to the integrity of digital information and erodes public trust. This urgent problem necessitates the development of sophisticated and reliable automated detection mechanisms. This study addresses this gap by proposing a robust fake news detection framework centred on a transformer-based architecture.
View Article and Find Full Text PDFPLoS One
September 2025
College of Business Administration, Northern Border University (NBU), Arar, Kingdom of Saudi Arabia.
The increasing dependence on cloud computing as a cornerstone of modern technological infrastructures has introduced significant challenges in resource management. Traditional load-balancing techniques often prove inadequate in addressing cloud environments' dynamic and complex nature, resulting in suboptimal resource utilization and heightened operational costs. This paper presents a novel smart load-balancing strategy incorporating advanced techniques to mitigate these limitations.
View Article and Find Full Text PDFBioinformatics
September 2025
Novo Nordisk Foundation Center for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark.
Motivation: Representation learning has revolutionized sequence-based prediction of protein function and subcellular localization. Protein networks are an important source of information complementary to sequences, but the use of protein networks has proven to be challenging in the context of machine learning, especially in a cross-species setting.
Results: We leveraged the STRING database of protein networks and orthology relations for 1,322 eukaryotes to generate network-based cross-species protein embeddings.
IEEE Trans Biomed Eng
September 2025
Objective: Diffusion magnetic resonance imaging (dMRI) often suffers from low spatial and angular resolution due to inherent limitations in imaging hardware and system noise, adversely affecting the accurate estimation of microstructural parameters with fine anatomical details. Deep learning-based super-resolution techniques have shown promise in enhancing dMRI resolution without increasing acquisition time. However, most existing methods are confined to either spatial or angular super-resolution, disrupting the information exchange between the two domains and limiting their effectiveness in capturing detailed microstructural features.
View Article and Find Full Text PDF