PlantDeepMeth: A Deep Learning Model for Predicting DNA Methylation States in Plants.

Plants (Basel)

State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cytosine DNA methylation (5mCs) is an important epigenetic modification in genomic research. However, the methylation states of some cytosine sites are not available due to the limitations of different studies, and there are few tools developed to deal with this problem, especially in plants, which have more methylation types than animals. Here, we report PlantDeepMeth, a novel deep learning model that utilizes deep learning to predict DNA methylation states in plants. The evaluation of PlantDeepMeth on known cytosine sites in both the and genomes shows good performance in predicting methylation states, indicating that the tool is good at learning patterns for methylation imputation. Motif analysis of the model's predictions identified specific motifs associated with hypo- or hyper-methylation states in and , further revealing key regulatory patterns captured by the model. Moreover, cross-species validation between and demonstrated the generalizability of PlantDeepMeth, with the model maintaining high performance across different plant species. These results highlight the effectiveness of PlantDeepMeth and demonstrate the potential of deep learning to advance plant genomics research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12157073PMC
http://dx.doi.org/10.3390/plants14111724DOI Listing

Publication Analysis

Top Keywords

deep learning
16
methylation states
16
dna methylation
12
learning model
8
states plants
8
cytosine sites
8
methylation
7
plantdeepmeth
5
learning
5
states
5

Similar Publications

Driven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.

View Article and Find Full Text PDF

The widespread dissemination of fake news presents a critical challenge to the integrity of digital information and erodes public trust. This urgent problem necessitates the development of sophisticated and reliable automated detection mechanisms. This study addresses this gap by proposing a robust fake news detection framework centred on a transformer-based architecture.

View Article and Find Full Text PDF

The increasing dependence on cloud computing as a cornerstone of modern technological infrastructures has introduced significant challenges in resource management. Traditional load-balancing techniques often prove inadequate in addressing cloud environments' dynamic and complex nature, resulting in suboptimal resource utilization and heightened operational costs. This paper presents a novel smart load-balancing strategy incorporating advanced techniques to mitigate these limitations.

View Article and Find Full Text PDF

SPACE: STRING proteins as complementary embeddings.

Bioinformatics

September 2025

Novo Nordisk Foundation Center for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark.

Motivation: Representation learning has revolutionized sequence-based prediction of protein function and subcellular localization. Protein networks are an important source of information complementary to sequences, but the use of protein networks has proven to be challenging in the context of machine learning, especially in a cross-species setting.

Results: We leveraged the STRING database of protein networks and orthology relations for 1,322 eukaryotes to generate network-based cross-species protein embeddings.

View Article and Find Full Text PDF

Objective: Diffusion magnetic resonance imaging (dMRI) often suffers from low spatial and angular resolution due to inherent limitations in imaging hardware and system noise, adversely affecting the accurate estimation of microstructural parameters with fine anatomical details. Deep learning-based super-resolution techniques have shown promise in enhancing dMRI resolution without increasing acquisition time. However, most existing methods are confined to either spatial or angular super-resolution, disrupting the information exchange between the two domains and limiting their effectiveness in capturing detailed microstructural features.

View Article and Find Full Text PDF