Genome-Wide Identification and Expression Analysis of the HSP90 Gene Family in Relation to Developmental and Abiotic Stress in Ginger ( Roscoe).

Plants (Basel)

State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ginger ( Roscoe), valued both for its medicinal and culinary uses, can be adversely affected by abiotic stresses such as high temperature and drought, which can impact its growth and development. The HSP90 gene family has been recognized as a crucial element for enhancing heat and drought resistance in plants. Nevertheless, no studies have yet reported on the HSP90 gene family in ginger. This study investigates the HSP90 gene family in ginger and its crucial role in the plant's responses to abiotic stresses. A total of 11 ZoHSP90 members were identified in the ginger genome, and these genes were unevenly distributed across five chromosomes. Bioinformatics analyses revealed that the HSP90 proteins in ginger vary in size, ranging from 306 to 886 amino acids. These proteins are predominantly located in the cytoplasm, endoplasmic reticulum, and mitochondria. Notably, ten conserved motifs were identified, with variations in motif distribution correlating with phylogenetic relationships among the genes. Furthermore, the gene structure analysis indicated differences in exon numbers, which may reflect specialized regulatory mechanisms and functional differentiation among the genes. Cis-acting elements within the promoter regions of the genes were identified, and their involvement in stress responses and hormonal signaling pathways was revealed. These elements are critical for regulating gene expression patterns in response to environmental stimuli, such as methyl jasmonate, salicylic acid, and abscisic acid. The presence of these elements indicates that genes play significant regulatory roles in plant adaptation to environmental changes. Expression profiling of the genes under various abiotic stress conditions demonstrated tissue specificity and dynamic regulation. Different genes exhibited distinct expression patterns in response to low-temperature, drought, high-temperature, and salt stresses. This suggests that the HSP90 gene family in ginger possesses both conserved functions and species-specific adaptations to optimize stress responses. Overall, this research provides valuable insights into the molecular functions of the HSP90 gene family in ginger and lays the groundwork for future studies aimed at enhancing crop resilience through genetic engineering. The findings contribute to a deeper understanding of plant adaptability to environmental stressors, which is crucial for improving agricultural productivity in the face of climate change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12157278PMC
http://dx.doi.org/10.3390/plants14111660DOI Listing

Publication Analysis

Top Keywords

hsp90 gene
24
gene family
24
family ginger
16
gene
8
abiotic stress
8
ginger
8
ginger roscoe
8
abiotic stresses
8
stress responses
8
expression patterns
8

Similar Publications

Evolution and function of heat shock protein 90 in economic shellfish: A review.

Dev Comp Immunol

September 2025

Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, China. Electronic address:

The phylum Mollusca is one of the most diverse groups, second only to arthropods, whose production through aquaculture and wild capture is increasing due to its nutritional and economic values, especially its protein availability for human consumption. However, the negative influence caused by pathogen infection and environmental challenges has led to low aquaculture productivity and economic losses for shellfish farmers. Heat shock proteins, as molecular chaperones, contribute to the folding of nascent proteins, environmental adaptation, the immune response, etc.

View Article and Find Full Text PDF

Rainbow trout(Oncorhynchus mykiss) is a typical cold-water fish often threatened by high summer temperatures. Nano-selenium as a feed additive can improve the antioxidant capacity of the body and relieve stress. In this study, different levels of nano-selenium (0, 5 and 10 mg/kg) were added to the feed of rainbow trout to determine the changes in spleen structure and expression of related genes in rainbow trout at the proper temperature (18℃) and heat stress temperature (24℃).

View Article and Find Full Text PDF

HSP90's Function Under Low Temperature Stress.

Biology (Basel)

August 2025

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.

Molecular chaperones, especially heat shock proteins (HSPs) have vital functions in cells' responses to stress. Here, we cloned and sequenced the complete complementary DNA encoding HSP90 () from the shrimp . The cDNA comprised 3162 bp, including a 2172 bp coding region encoding a 724 amino acid-protein (predicted molecular mass = 83.

View Article and Find Full Text PDF

Synthetic musk compounds (SMCs), such as galaxolide (HHCB) and tonalide (AHTN), are commonly used fragrance ingredients in personal care products and are frequently detected in aquatic environments due to their persistence and bioaccumulative nature. This study aimed to evaluate the individual and combined toxic effects of HHCB (1000 ng L) and AHTN (400 ng L) on the freshwater gastropod Melanopsis praemorsa following a 7-day exposure. Five experimental groups were formed: control, vehicle control, HHCB, AHTN, and HHCB+AHTN.

View Article and Find Full Text PDF

Genome-wide identification of heat shock protein gene family and their response to chronic heat stress in skeletal muscle of black rockfish (Sebastes schlegelii).

Fish Shellfish Immunol

September 2025

MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572025, China. Electronic add

Functioning as molecular chaperones, heat shock proteins (HSPs) are rapidly upregulated under stress conditions, safeguarding cells against damage induced by heat, mechanical injury, and chemical agents. Despite their critical physiological roles, a comprehensive genome-wide characterization of HSP genes has been lacking for Sebastes schlegelii, a commercially important coastal benthic fish. In this study, we systematically identified the HSP gene family and analyzed its expression profiles.

View Article and Find Full Text PDF