Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Exosomal microRNAs (ex-miRs), encapsulated in extracellular vesicles (EVs), play a vital role in facilitating paracrine communication among granulosa cells (GCs), cumulus cells (CCs), and the oocyte inside follicular fluid (FF). These small non-coding RNAs are crucial for regulating folliculogenesis, oocyte maturation, and early embryonic development via modulating intracellular signaling networks. Dysregulation o has been associated with reproductive disorders such as polycystic ovarian syndrome (PCOS), diminished ovarian reserve (DOR), and inadequate ovarian response (POR), impacting oocyte quality and fertility outcomes. This narrative review consolidates molecular data from current human and animal studies regarding ex-miR expression patterns, functional targets, and pathway involvement within the context of assisted reproductive technologies (ARTs). A literature-based analysis was undertaken, focusing on signaling pathways, pathogenic processes, and clinical implications. Specifically, ex-miRs-such as miR-21, miR-34c, miR-143-3p, miR-155-5p, miR-339-5p, and miR-424-5p-were identified as regulators of critical pathways including phosphoinositide 3-kinase (PI3K)-AKT, ERK1/2, TGF-β/SMAD, and Rb-E2F1. These ex-miRs regulate apoptosis, glycolysis, mitochondrial function, and cell cycle expansion to influence oocyte competence. Pathological patterns in PCOS and POR are associated with altered ex-miR expression that disrupts metabolic and developmental signaling. Research utilizing animal models confirmed that modifications in EV-associated miRNA influence in vitro maturation (IVM) efficiency and blastocyst quality. Ex-miRs serve as intriguing non-invasive biomarkers and potential therapeutic targets for ARTs. Their mechanical involvement in oocyte and follicular physiology positions them for integration into forthcoming precision-based infertility therapies. For its implementation in reproductive medicine, EV profiling requires standardization and further functional validation in clinical environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12155520PMC
http://dx.doi.org/10.3390/ijms26115363DOI Listing

Publication Analysis

Top Keywords

granulosa cells
8
oocyte competence
8
ex-mir expression
8
oocyte
6
exosomal communication
4
communication cumulus-oocyte
4
cumulus-oocyte complexes
4
complexes granulosa
4
cells molecular
4
molecular axis
4

Similar Publications

Influence of oxidative stress on women's fertility: A model with a generational age Caputo's fractional derivative.

Biosystems

September 2025

IVIRMA Global Research Alliance, The Health Research Institute La Fe (IIS La Fe), Edificio Biopolo. Av. Fernando Abril Martorell, 106 - Torre A, Planta 1, Valencia, 46026, Spain; Rey Juan Carlos University, Department of Medical Specialties and Public Health, Edificio Departamental II. Av. de Atenas

Cellular aging associated with telomeric shortening plays an important role in female fertility. In addition to natural decline, due to the loss of telomeric repeats during cell division, other factors such oxidative stress (OS), accelerate telomere shortening by causing a dramatic loss of telomeric repeats. Thus, mathematical models to better understand the accelerated aging leading to infertility are lacking in the literature.

View Article and Find Full Text PDF

The Age-Associated Long Noncoding RNA lnc81 Regulates Ovarian Granulosa Cell Proliferation and Apoptosis Through TEAD2-CCN1/2 Pathway in Mice.

J Cell Physiol

September 2025

Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.

Ovarian granulosa cells (GCs) are pivotal for follicular homeostasis, and their dysregulated apoptosis drives age-related ovarian aging. The Hippo signaling pathway, modulated by long noncoding RNAs (lncRNAs), is implicated in regulating GCs proliferation and ovarian aging. TEAD2 (Transcriptional Enhanced Associate Domain 2), a key downstream transcription factor of the Hippo signaling pathway, plays a critical role in regulating cell proliferation, apoptosis, and embryonic stem cell self-renewal.

View Article and Find Full Text PDF

Background And Aim: Granulosa cells (GCs) are crucial mediators of follicular development and oocyte competence in goats, with their gene expression profiles serving as potential biomarkers of fertility. However, the lack of a standardized, quantifiable method to assess GC quality using transcriptomic data has limited the translation of such findings into reproductive applications. This study aimed to develop a hybrid deep learning model integrating one-dimensional convolutional neural networks (1DCNNs) and gated recurrent units (GRUs) to classify GCs as fertility-supporting (FS) or non-fertility-supporting (NFS) using single-cell RNA sequencing (scRNA-seq) data.

View Article and Find Full Text PDF

Research Progress on Ferroptosis Regulation of Female Reproduction.

Biol Trace Elem Res

September 2025

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.

Ferroptosis is a form of iron-regulated cell death that plays a critical role in various aspects of female reproductive system development. These processes include the normal estrous cycle, ovarian formation, follicular maturation, ovulation, and pregnancy, all of which are essential for maintaining reproductive health in female animals. However, excessive iron leads to the accumulation of reactive oxygen species within cells, disrupting intracellular redox balance, inducing mitophagy, membrane rupture, and lipid peroxidation, which can damage tissues and cells, ultimately resulting in ferroptosis.

View Article and Find Full Text PDF