Molecular Mechanism of Exogenous GABA in Regulating Salt Tolerance in Tomato ( L.).

Int J Mol Sci

Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832000, China.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To explore the mechanism by which γ-aminobutyric acid (GABA) regulates the response of different salt-sensitive tomato seedlings under salt stress conditions, we used the previously selected salt-sensitive tomato 'M82' and the salt-tolerant introgression line 'IL-7-5-5'. The following three treatments were set up: (1) a normal nutrient solution concentration as the control, (2) a nutrient solution with 200 mmol·L NaCl, and (3) a nutrient solution with 200 mmol·L NaCl and 35 mmol·L GABA. The concentration of the reactive oxygen species metabolism-related compounds and antioxidant enzyme activity in the leaves of tomato seedlings subjected to the different treatments were measured, and transcriptome and metabolome analyses were conducted. After adding GABA, the SOD, POD, and APX activity in the leaves of the 'M82' seedlings significantly increased, while the GR activity significantly decreased. In the 'IL-7-5-5' seedlings, the CAT, APX, and GR activity significantly increased. The combined results from the transcriptome and metabolome analysis in leaves indicated that in 'M82' seedlings, 52 metabolic pathways were enriched, which included plant signal transduction pathways, phenylpropanoid biosynthesis pathways, and amino sugar and nucleotide sugar metabolism pathways. In the salt-tolerant 'IL-7-5-5' seedling leaves, 59 metabolic pathways were enriched, which included plant signal transduction pathways, amino acid biosynthesis pathways, and carbon metabolism pathways. A further analysis revealed that both varieties had a higher number of differentially enriched genes and differential metabolites belonging to the plant hormone signal transduction and amino acid biosynthesis pathways, indicating that GABA enhances the salt tolerance of tomato seedlings by regulating these two mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12154988PMC
http://dx.doi.org/10.3390/ijms26115145DOI Listing

Publication Analysis

Top Keywords

tomato seedlings
12
nutrient solution
12
signal transduction
12
biosynthesis pathways
12
pathways
9
salt tolerance
8
tolerance tomato
8
salt-sensitive tomato
8
solution 200
8
200 mmol·l
8

Similar Publications

Isolation of a Novel Plant Growth-Promoting Dyella sp. From a Danish Natural Soil.

Environ Microbiol Rep

October 2025

DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark.

Natural soils are reservoirs of potentially beneficial microbes that can improve plant performance. Here, we isolated 75 bacterial strains from surface-sterilised roots of Arabidopsis thaliana (Arabidopsis) grown in a natural soil derived from an alder swamp. Culture-dependent isolation of individual strains from the roots, followed by monoassociation-based screening, identified seven bacteria that promoted Arabidopsis seedling weight.

View Article and Find Full Text PDF

Genomic insights into host-associated variants and transmission features of a ToBRFV isolate from Mexico.

Front Plant Sci

August 2025

Laboratorio de Bioinformática y Redes Complejas, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Departamento de Ingeniería Genética, Unidad Irapuato, Irapuato, Guanajuato, Mexico.

Tomato brown rugose fruit virus (ToBRFV) poses a global threat to tomato and pepper production due to its high transmissibility and adaptability. Understanding its genomic features and transmission mechanisms is critical for effective disease management. We characterized the genome and biological properties of a ToBRFV isolate from Mexico.

View Article and Find Full Text PDF

This study investigates the roles of strigolactones (SL) and endogenous hydrogen sulfide (HS) in regulating physiological processes in tomato seedlings under NaCl-induced stress. Exposure of the seedlings to 100 mM NaCl stress reduced K content by 21% while increasing Na accumulation by 69%, disrupting the K/Na ratio and impairing H-ATPase activity. However, the application of SL improved H-ATPase activity and K uptake and reduced Na accumulation.

View Article and Find Full Text PDF

Soil salinity adversely affects crop growth and development, leading to reduced soil fertility and agricultural productivity. The indigenous salt-tolerant plant growth-promoting rhizobacteria (PGPR), as a sustainable microbial resource, do not only promote growth and alleviate salt stress, but also improve the soil microecology of crops. The strain H5 isolated from saline-alkali soil in Bachu of Xinjiang was studied through whole-genome analysis, functional annotation, and plant growth-promoting, salt-tolerant trait gene analysis.

View Article and Find Full Text PDF

Research on L.‘s potential applications as a dietary supplement, medicinal herb and plant growth enhancer under biotic and abiotic stresses has increased recently. Our study aimed to investigate the phytochemical screening of Moringa leaf aqueous extract (MLAE) and to determine its antimicrobial activity against pathogenic bacteria and fungi.

View Article and Find Full Text PDF