98%
921
2 minutes
20
Microglia critically shape neuronal circuit development and function, yet their region-specific properties and roles in distinct circuits of the human brain remain poorly understood. In this study, we generated region-specific brain organoids (cortical, striatal, and midbrain), each integrated with human microglia, to fill this critical gap. Single-cell RNA sequencing uncovered six distinct microglial subtypes exhibiting unique regional signatures, including a subtype highly enriched for the GABA receptor gene within striatal organoids. To investigate the contributions of microglia to neural circuitry, we created microglia-incorporated midbrain-striatal assembloids, modeling a core circuit node for many neuropsychiatric disorders including autism. Using chemogenetics to activate this midbrain-striatal circuit, we observed increased calcium signaling in microglia involving GABA receptors. Leveraging this model, we examined microglial responses within neural circuits harboring an nonsense (C959X) mutation associated with profound autism. Remarkably, microglia displayed heightened calcium responses to mutation-mediated neuronal hyperactivity, and engaged in excessive synaptic pruning. These pathological effects were reversed by pharmacological inhibition of microglial GABA receptors. Collectively, our findings establish an advanced platform to dissect human neuroimmune interactions in sub-cortical regions, highlighting the important role of microglia in shaping critical circuitry related to neuropsychiatric disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12157492 | PMC |
http://dx.doi.org/10.1101/2025.06.04.657874 | DOI Listing |
Neurochem Res
September 2025
International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
The concept of the central nervous system (CNS) reserve emerged from the mismatch often observed between the extent of brain pathology and its clinical manifestations. The cognitive reserve reflects an "active" capacity, driven by the plasticity of CNS cellular components and shaped by experience, learning, and memory processes that increase resilience. We propose that neuroglial cells are central to defining this resilience and cognitive reserve.
View Article and Find Full Text PDFBrain
September 2025
Central European Institute of Technology Masaryk University (CEITEC MU), 625 00 Brno, Czech Republic.
Mutations in the human ADAR gene encoding adenosine deaminase acting on RNA 1 (ADAR1) cause Aicardi-Goutières syndrome 6 (AGS6); a severe auto-inflammatory encephalopathy with aberrant interferon (IFN) induction. AdarΔ2-13 null mutant mouse embryos lacking ADAR1 protein die with high levels of IFN-stimulated gene (ISG) transcripts. In Adar Mavs double mutants also lacking the Mitochondrial antiviral signaling (MAVS) adaptor, the aberrant IFN induction is prevented.
View Article and Find Full Text PDFFront Nucl Med
August 2025
School of Health Sciences and Social Work, Griffith University, Brisbane/Gold Coast, QLD, Australia.
Background: Animal models of nerve compression have revealed neuroinflammation not only at the entrapment site, but also remotely at the spinal cord. However, there is limited information on the presence of neuroinflammation in human compression neuropathies. The objectives of this study were to: (1) assess which tracer kinetic model most optimally quantified [C]DPA713 uptake in the spinal cord and neuroforamina in patients with painful cervical radiculopathy, (2) evaluate the performance of linearized methods (e.
View Article and Find Full Text PDFFront Immunol
September 2025
College of Physical Education, Yangzhou University, Yangzhou, Jiangsu, China.
Traumatic spinal cord injury (TSCI) is a devastating neurological condition with limited therapeutic options and a high likelihood of permanent disability. Among the multifaceted secondary injury mechanisms triggered by TSCI, pyroptosis-an inflammatory form of programmed cell death-has emerged as a key pathological process. In particular, microglial pyroptosis plays a pivotal role in exacerbating neuroinflammation and disrupting tissue homeostasis, thereby amplifying the secondary injury cascade.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Blood Transfusion, Huashan Hospital, Fudan University, Shanghai, China.
Background: Aging is accompanied by profound changes in immune regulation and epigenetic landscapes, yet the molecular drivers underlying these alterations are not fully understood.
Methods: Transcriptional profiles of peripheral blood samples from young and elderly individuals, together with aging-associated methylation probe data, were used to identify aging biomarkers. Transcriptomics and chromatin immunoprecipitation sequencing (ChIP-Seq) were conducted to explore potential regulatory mechanisms.