98%
921
2 minutes
20
Background: As members of the nuclear receptor (NR) family of transcription factors, peroxisome proliferator-activated receptors (PPARs) regulate essential cellular processes, including lipid metabolism, glucose uptake, cell proliferation, and programmed cell death through ligand-mediated activation. Within the PPAR subfamilies, PPAR-γ (PPARG) is crucial to the development of fat cells, sensitivity to insulin, apoptosis, and metastasis. Furthermore, it demonstrates properties that counteract fibrosis and inflammation, thus establishing itself as a notable target for therapeutic interventions against conditions such as type 2 diabetes and cancer. PPARG is reported to be a promising target for patients diagnosed with colorectal cancer (CRC). Globally, colorectal cancer ranks as the third most prevalent malignancy and is responsible for approximately 10% of all cancer mortalities, and PPARG is significantly expressed in 70% of the sporadic CRC. In individuals with CRC, the precise function of PPARG remains not entirely comprehended and elucidation of the PPARG transcriptional regulation in CRC seems promising.
Results: This study integrates RNA-seq and ChIP-seq reads to analyze the effects of Rosiglitazone on HT-29 colon cancer cells. Peak calling analysis from ChIP-seq data identified 14,000 to 34,000 binding sites for PPARG across different experimental conditions. RNA-seq analysis highlighted significant differential gene expression in Rosiglitazone-treated cells, with 4362 and 6780 genes significantly regulated at 24 and 48 h, respectively. The correlation of these datasets with PPRE-associated kinases resulted in the identification of 18 differentially expressed genes (DEGs), followed by subsequent analysis of gene ontology, pathway enrichment, and protein-protein interactions, culminating in the elucidation of seven hub genes (PTK2, HGS, CDK8, PRPF6, PRKDC, PRKCZ, MET). Further these hub genes correlated with CRC progression and patient survival. Validation using independent GEO datasets (GSE113513 and GSE210693) and gene effect scores derived from CRISPR knockout screens further supported the functional impact of these hub genes. Disease ontology and mutational analyses implicated the hub genes in various cancers, including CRC. Moreover, miRNA analysis identified 37 experimentally validated miRNAs potentially modulating hub gene expression.
Conclusions: These findings advance our understanding of PPARG's regulatory network and underscore its potential as a therapeutic target, establishing a robust framework for future research in PPARG-related pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12153098 | PMC |
http://dx.doi.org/10.1186/s13062-025-00654-7 | DOI Listing |
Genome Biol
September 2025
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
Background: Soil salinization represents a critical global challenge to agricultural productivity, profoundly impacting crop yields and threatening food security. Plant salt-responsive is complex and dynamic, making it challenging to fully elucidate salt tolerance mechanism and leading to gaps in our understanding of how plants adapt to and mitigate salt stress.
Results: Here, we conduct high-resolution time-series transcriptomic and metabolomic profiling of the extremely salt-tolerant maize inbred line, HLZY, and the salt-sensitive elite line, JI853.
Eur J Gastroenterol Hepatol
September 2025
Department of Gastroenterology, First Affiliated Hospital of Shantou University Medical College, Shantou.
Background: Crohn's disease (CD) and rheumatoid arthritis (RA) are autoimmune diseases. CD is known to be closely associated with RA. However, the mechanisms underlying these relationships remain unclear.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Biology, Duke University, Durham, NC 27708.
Organisms use circadian clocks to synchronize physiological processes to anticipate the Earth's day-night cycles and regulate responses to environmental signals to gain competitive advantage. While divergent genetic clocks have been studied extensively in bacteria, fungi, plants, and animals, an ancient conserved circadian redox rhythm has been recently reported. However, its biological function and physiological outputs remain elusive.
View Article and Find Full Text PDFPsychopharmacology (Berl)
September 2025
Institute of Cardiovascular Research, Sleep Medical Center, Department of Psychiatry, Fundamental and Clinical Research on Mental Disorders Key Laboratory of Luzhou, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China.
Rationale: Genome-wide association studies (GWASs) are used to identify genetic variants for association with schizophrenia (SCZ) risk; however, each GWAS can only reveal a small fraction of this association.
Objectives: This study systematically analyzed multiple GWAS data sets to identify gene subnetwork and pathways associated with SCZ.
Methods: We identified gene subnetwork using dmGWAS program by combining SCZ GWASs and a human interaction network, performed gene-set analysis to test the association of gene subnetwork with clinical symptom scores and disease state, meanwhile, conducted spatiotemporal and tissue-specific expression patterns and cell-type-specific analysis of genes in the subnetwork.
Int J Gen Med
September 2025
Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.
Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.
Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.