A PHP Error was encountered

Severity: Warning

Message: opendir(/var/lib/php/sessions): Failed to open directory: Permission denied

Filename: drivers/Session_files_driver.php

Line Number: 365

Backtrace:

File: /var/www/html/index.php
Line: 317
Function: require_once

The MYB transcription factor ClPC modulates petal color and chlorophyll accumulation in watermelon. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

During the pre-anthesis stage, high chlorophyll levels in petals result in a green hue in many plants. Upon anthesis, chlorophyll degradation uncovers other pigments, thereby influencing pollinator attraction and reproductive success in insect-pollinated crops. In the watermelon accession WM109, a novel petal phenotype characterized by a yellow-green hue was observed, significantly different from the canonical yellow petal phenotype typically associated with this species. Genetic analysis using F populations revealed that this yellow-green petal trait is controlled by a single recessive gene. By screening SSR primer pairs with the constructed yellow and yellow-green DNA pools and genotyping F individuals, the responsible gene was mapped to a 139.7 kb interval on watermelon chromosome 11, containing two candidate genes. Through sequence analysis, expression profiling, and functional verification of these candidates, a gene encoding a MYB transcription factor with a base insertion was identified as the key determinant of this unusual phenotype, which is characterized by elevated chlorophyll levels and increased chloroplast density. Given the limited current knowledge regarding the relationship between MYB transcription factors and chlorophyll biosynthesis, these findings enhance our understanding of the molecular mechanisms underlying chlorophyll production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2025.112586DOI Listing

Publication Analysis

Top Keywords

myb transcription
12
transcription factor
8
chlorophyll levels
8
petal phenotype
8
phenotype characterized
8
chlorophyll
6
factor clpc
4
clpc modulates
4
petal
4
modulates petal
4

Similar Publications

Although floral morphology in ornamental chrysanthemums has been widely investigated, its genetic basis in medicinal varieties such as Chrysanthemum morifolium cv. 'Hangju' remains largely unexplored, despite its direct relevance to both capitulum development and medicinal quality. To address this gap, we performed transcriptome profiling of ray and disc florets from wild-type and mutant plants, which led to the identification of two MYB-related transcription factor genes, CmDIV-like and CmRAD1, as differentially expressed and potentially associated with altered floral symmetry.

View Article and Find Full Text PDF

Slt2 positively regulates Myb-mediated cellulose utilization in .

mBio

September 2025

Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China.

Unlabelled: Fungal degradation of cellulose facilitates the sustainable harnessing of biosphere energy and carbon cycling. is one of the basidiomycetes with the largest number of hydrolytic enzymes in its genome. The mycelium of degrades cellulose through the production of substantial amounts of cellulase, enabling the absorption of carbon sources and nutrients essential for fruiting body development.

View Article and Find Full Text PDF

Introduction: Transcription factors (TFs) are essential regulators of gene expression, orchestrating plant growth, development, and responses to environmental stress. , a halophytic species renowned for its exceptional salt resistance, provides an ideal model for investigating the regulatory mechanisms underlying salt tolerance.

Methods: Here, we present a comprehensive genome-wide identification and characterization of TFs in .

View Article and Find Full Text PDF

Exogenous Melatonin Regulates Hormone Signalling and Photosynthesis-Related Genes to Enhance Brassica napus. Yield: A Transcriptomic Perspective.

J Pineal Res

September 2025

School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, China.

Melatonin, a multifunctional signalling molecule in plants, has been increasingly recognized for its role in improving stress tolerance, regulating hormone signalling, and enhancing crop productivity. Exogenous melatonin application represents a promising strategy to enhance crop productivity under global agricultural challenges. This study aimed to investigate the physiological and molecular mechanisms by which melatonin improves yield in Brassica napus.

View Article and Find Full Text PDF

CsWRKY15 from tea plant promotes its auto-resistance when intercropped with chestnut.

Plant Cell Physiol

September 2025

Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, College of Landscape Architecture and Horticulture Science, Southwest Forestry University, Kunming 650224, China.

To explore the role of WRKY transcription factors in resistance, a WRKY15 homologous gene, CsWRKY15, and its promoter were isolated from tea plants when intercropped with chestnut. CsWRKY15 expression was significantly induced by ethephon, polyethylene glycol (PEG), and low temperature. Notably, its expression was strongly induced by exogenous gibberellic acid (GA3).

View Article and Find Full Text PDF