98%
921
2 minutes
20
Photon upconversion via triplet-triplet annihilation (TTA-UC) is a promising technology for environmentally responsive sensing, characterized by delayed fluorescence and anti-Stokes shifts. However, it faces quantification challenges due to intensity-based detection limitations, such as fluorophore concentration, excitation source instability, and environmental scattering. To address these issues, we report a time-resolved fluorescence strategy that exploits the intrinsic delayed fluorescence lifetime of TTA-UC systems as a robust, concentration-independent parameter for the quantitative spatiotemporal mapping of environmental stimuli. Using a TTA-UC platform comprising a lutetium(III) porphyrin photosensitizer and a 9,10-bis(2-phenylethynyl)anthracene (BPEA) annihilator, we demonstrate that the TTA-UC lifetime acts as a universal reporter for diverse physicochemical parameters, including temperature, viscosity, analyte concentration, and pH. As a practical demonstration, we engineered nanoparticles encapsulating the pH-responsive Lu(III) porphyrin/BPEA system, which exhibited a linear lifetime-pH correlation (20.5-34.0 μs vs pH 4.0-8.0, > 0.99) enabling real-time and pH monitoring in beverages, spoiling milk, and living cells. Fluorescence lifetime imaging microscopy integration achieved long-lived emission, exceptional photostability, and high environmental contrast, establishing a versatile platform for quantitative sensing in real-world scenarios. This work bridges the gap between TTA-UC photophysics and practical sensing applications, offering a generalizable platform for stimuli-responsive materials design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5c05977 | DOI Listing |
Top Magn Reson Imaging
October 2025
BIOSPACE LAB, Nesles-la-Vallée, France.
Aims: Cardiac tumors are aggressive and asymptomatic in early stages, causing late diagnosis and locoregional metastasis. Currently, the standard of care uses gadolinium-based contrast agents for MRI, and the associated hypersensitivity reactions are a significant concern, such as gadolinium deposition disease. In addition, the proximity of cardiac lesions closer to vital structures complicates surgical interventions.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda, Bhubaneswar 752050, Odisha, India.
Quantum-confined perovskites represent an emerging class of materials with great potential for optoelectronic applications. Specifically, zero-dimensional (0D) perovskites have garnered significant attention for their unique excitonic properties. However, achieving phase-pure, size-tunable 0D perovskite materials and gaining a clear understanding of their photophysical behavior remains challenging.
View Article and Find Full Text PDFACS Omega
September 2025
Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro (IMA/UFRJ), Rio de Janeiro, Rio de Janeiro 21941-598, Brazil.
This study reports the synthesis and functionalization of poly-(-vinylcarbazole) (PVK) with anthracene units to enhance its blue photoluminescence properties. Structural and thermal analyses confirmed successful incorporation of anthracene moieties into the PVK backbone at an approximate 3:1 ratio of PVK repeat unit to anthracene. Photophysical characterization showed that anthracene-functionalized PVK (PVK-An) retained blue-region emission (432 nm), although with reduced emission efficiency due to π-π stacking interactions.
View Article and Find Full Text PDFACS Omega
September 2025
Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw 02-786, Poland.
A dual-cavity lasing platform is reported in which thioflavin T (ThT), a rotor-sensitive molecular probe, is employed to map molecular-crowding effects within starch granules via coupled Fabry-Perot (FP) and whispering gallery mode (WGM) resonances. In this architecture, global standing-wave feedback is furnished by a planar FP cavity, while size-tunable WGMs are supported by ThT-coated starch granules. Granules were sorted into five diameter classes (<20, 20-30, 30-40, 40-60, and >60 μm), and lasing thresholds alongside fluorescence lifetimes were determined.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Chemistry & Materials Engineering, Fuyang Normal University, Fuyang 236037, China.
Halide perovskite quantum dots (QDs) have demonstrated outstanding performance in light-emitting applications. However, the performance of blue perovskite QDs lags far behind that of their red and green counterparts, especially those with color coordinates approaching (0.131, 0.
View Article and Find Full Text PDF