98%
921
2 minutes
20
Metastasis is a major cause of cancer deaths, but the underlying molecular mechanisms remain largely unknown. Esophageal squamous cell carcinoma (ESCC) is a highly aggressive cancer with poor survival, yet the key kinases driving ESCC metastasis and their biological function have not been fully discovered. Here, a kinase-substrate map of metastatic ESCC is presented for the first time by conducting a phosphoproteomics analysis of 60 clinical specimens. By further consolidating data with CRISPR/Cas9 functional screening, LIM domain kinase 1 (LIMK1) is identified as a novel kinase of β-catenin. The in vitro and in vivo experiments demonstrated that LIMK1 cooperates with Cyclin-dependent kinase 5 (CDK5) to promote cancer metastasis in a phosphorylation-dependent manner. Mechanistically, LIMK1 and CDK5 synergistically phosphorylate β-catenin at S191, enhancing its phosphorylation and interaction with Nucleoporin 93, resulting in β-catenin nuclear translocation and activation of key pathways in cancer metastasis. High expression of LIMK1 and CDK5 is associated with poor prognosis of ESCC patients, and the clinical and functional significance of LIMK1/CDK5-Wnt/β-catenin axis is also verified in esophageal adenocarcinoma, gastric cancer, and lung cancer. Furthermore, the combination of LIMK1 and CDK5 inhibitors significantly suppresses metastasis in multiple models. This work highlights LIMK1 as a novel regulatory and targetable kinase of β-catenin, informing the treatment of advanced cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12362812 | PMC |
http://dx.doi.org/10.1002/advs.202503223 | DOI Listing |
J Agric Food Chem
September 2025
The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
This study develops a multienzyme coimmobilization strategy on NTA-functionalized ZIF-8-coated magnetic nanoparticles (NZMNPs) for efficient d-allulose synthesis. Under optimized immobilization conditions (enzyme-to-carrier ratio: 1:50 w/w, 30 min immobilization), the system achieved an immobilization efficiency of 93.7% along with 107.
View Article and Find Full Text PDFJAMA Netw Open
September 2025
Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla.
Importance: Janus kinase (JAK) inhibitors are highly effective medications for several immune-mediated inflammatory diseases (IMIDs). However, safety concerns have led to regulatory restrictions.
Objective: To compare the risk of adverse events with JAK inhibitors vs tumor necrosis factor (TNF) antagonists in patients with IMIDs in head-to-head comparative effectiveness studies.
Dig Dis Sci
September 2025
Department of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
Background And Aims: Liver metastasis significantly contributes to poor survival in patients with colorectal cancer (CRC), posing therapeutic challenges due to limited understanding of its mechanisms. We aimed to identify a potential target critical for CRC liver metastasis.
Methods: We analyzed the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases and identified EphrinA3 (EFNA3) as a potential clinically relevant target.
Mol Divers
September 2025
Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492001, India.
Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.
View Article and Find Full Text PDFMol Divers
September 2025
Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia.
Cyclin-dependent kinase 20 (CDK20), also known as cell cycle-related kinase (CCRK), plays a pivotal role in hepatocellular carcinoma (HCC) progression by regulating β-catenin signaling and promoting uncontrolled proliferation. Despite its emerging significance, selective small-molecule inhibitors of CDK20 remain unexplored. In this study, a known CDK20 inhibitor, ISM042-2-048, was employed as a reference to retrieve structurally similar compounds from the PubChem database using an 85% similarity threshold.
View Article and Find Full Text PDF