98%
921
2 minutes
20
African swine fever (ASF) is a highly infectious and devastating disease that poses a significant threat to the global swine industry. The rapid spread of ASF and its ongoing pandemics continue to impact pig farming worldwide. The absence of an effective vaccine, coupled with the complexity of the African swine fever virus (ASFV), makes the control and eradication of ASF a formidable challenge. Nanobodies, derived from camelids, have emerged as promising alternatives to conventional monoclonal antibodies, offering distinct advantages in various biological applications. In this study, specific nanobodies targeting the ASFV K205R protein were selected from a phage-displayed immune library. Ten individual nanobodies were isolated based on their complementary determining regions (CDRs), and four were found to bind to the naive K205R protein of ASFV. After evaluation, nanobody VHH1 was selected for the development of a competitive enzyme-linked immunosorbent assay (ELISA) for ASFV antibody detection. The assay was optimized for various reaction conditions, and the cut-off value was determined to be 26.85%, with diagnostic sensitivity and specificity of 97.52% and 97.48%, respectively. No cross-reactivity was observed with sera from pigs infected with other swine viruses, and the assay exhibited a detection sensitivity of 1:128. Comparative analysis of clinical samples showed a high concordance rate (98.98%) between the nanobody-based and monoclonal antibody-based ELISAs (Mab-cELISA). In conclusion, this study presents a phage-displayed nanobody-based competitive ELISA for the detection of ASFV antibodies, which could be valuable for ASF sero-surveillance. Additionally, the K205R-specific nanobodies identified here may be adapted for other biological or biomedical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12139077 | PMC |
http://dx.doi.org/10.1186/s12985-025-02781-z | DOI Listing |
Vet Res Commun
September 2025
College of Veterinary Medicine, Vietnam National University of Agriculture, 100000, Hanoi, Vietnam.
African swine fever (ASF) is a contagious viral disease that affects domestic pigs and Eurasian wild boars, causing significant economic losses to the global pig industry. Since its first outbreak in February 2019, ASF has had a profound impact on the Vietnamese pig sector. This review presents a comprehensive analysis of ASF outbreaks in Vietnam from 2019 to 2024, focusing on outbreak dynamics, control strategies, economic impact, and key lessons learned.
View Article and Find Full Text PDFACS Synth Biol
September 2025
A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russian Federation.
African swine fever virus (ASFV) is a large DNA virus that causes a highly lethal disease in pigs and currently has no effective vaccines or antiviral treatments available. We designed a protein switch that combines the DNase domain of colicin E9 (DNase E9) and its inhibitor Im9 with the viral protease cleavage site. The complex is only destroyed in the presence of an ASFV pS273R protease, which releases DNase activity.
View Article and Find Full Text PDFAnal Chem
September 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Discipline of Intelligent Instrument and Equipment, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361
Rolling circle amplification (RCA) has revolutionized nucleic acid detection owing to its isothermal simplicity. However, over two decades of clinical application have been hampered by off-target amplification and incompatibility with double-stranded DNA (dsDNA). Herein, a strategy, specifically cleavage of rationally designed DNA/RNA chimeric hairpin preprimer by dsDNA-targeted CRISPR/Cas12a to rlease ssRNA for initiating RCA (SCOPE-RCA), is proposed for nucleic acid identification of African swine fever virus (ASFV).
View Article and Find Full Text PDFMicrob Genom
September 2025
Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, PR China.
African swine fever virus (ASFV) is highly transmissible and can cause up to 100% mortality in pigs. The virus has spread across most regions of Asia and Europe, resulting in the deaths of millions of pigs. A deep understanding of the genetic diversity and evolutionary dynamics of ASFV is necessary to effectively manage outbreaks.
View Article and Find Full Text PDFFEMS Microbiol Rev
September 2025
CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal.
African Swine Fever (ASF), caused by the highly contagious African swine fever virus (ASFV), poses a significant threat to domestic and wild pigs worldwide. Despite its limited host range and lack of zoonotic potential, ASF has severe socio-economic and environmental consequences. Current control strategies primarily rely on early detection and culling of infected animals, but these measures are insufficient given the rapid spread of the disease.
View Article and Find Full Text PDF