Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The advent of Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of the Coronavirus Disease 2019 (COVID-19) pandemic, has impacted physical and mental health worldwide. The lack of effective antiviral drugs necessitates a robust therapeutic approach to develop anti-SARS-CoV-2 drugs. Various investigations have recognized ACE2 as the primary receptor of SARS-CoV-2, and this amalgamation of ACE2 with the spike protein of the coronavirus is paramount for viral entry into the host cells and inducing infection. Consequently, restricting the virus's accessibility to ACE2 offers an alternative therapeutic approach to averting this illness.

Objective: The study aimed to identify potent inhibitors with enhanced affinity for the ACE2 protein and validate their stability and efficacy against established inhibitors via molecular docking, machine learning, and MD simulations.

Methodology: 202 ACE2 inhibitors (PDB ID and 6LZG), comprising repurposed antiviral compounds and specific ACE2 inhibitors, were selected for molecular docking. The two most effective compounds obtained from docking were further analyzed using machine learning to identify potential compounds with enhanced ACE2-binding affinity. To refine the dataset, molecular decoys were generated through the Database of Useful Decoys: Enhanced (DUD-E) server, and Singular Value Decomposition (SVD) was applied for data preprocessing. The Tree-based Pipeline Optimization Tool (TPOT) was then utilized to optimize the machine learning pipeline. The most promising ML-predicted compounds were re-evaluated through docking and subjected to Molecular Dynamics (MD) simulations to evaluate their structural stability and interactions with ACE2. Finally, these compounds were evaluated against the top two pre-established inhibitors using various computational tools.

Results: The two best pre-established inhibitors were identified as Birinapant and Elbasvir, while the best machine-learning-predicted compounds were PubChem ID: 23658468 and PubChem ID: 117637105. Pharmacophore studies were conducted on the most effective machine-learning-predicted compounds, followed by a comparative ADME/T analysis between the best ML-screened and pre-established inhibitors. The results indicated that the top ML compound (PubChem ID: 23658468) demonstrated favorable BBB permeability and a high HIA index, highlighting its potential for therapeutic applications. The ML-screened ligand demonstrated structural stability with an RMSD (0.24 nm) and greater global stability (Rg: 2.08 nm) than Birinapant. Hydrogen bonding interactions further validated their strong binding affinity. MM/PBSA analysis confirmed the ML-screened compound's stronger binding affinity, with a binding free energy of - 132.90 kcal/mol, indicating enhanced stability in complex formation.

Conclusion: The results emphasize the efficacy of integrating molecular docking, machine learning, and molecular dynamics simulations in facilitating the rapid identification of novel inhibitors. PubChem ID: 23658468 demonstrates robust binding affinity to ACE2 and favorable pharmacokinetic properties, establishing it as a promising candidate for further investigation.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0115734064370188250527043536DOI Listing

Publication Analysis

Top Keywords

machine learning
20
molecular docking
16
pre-established inhibitors
12
pubchem 23658468
12
binding affinity
12
learning molecular
8
therapeutic approach
8
ace2
8
inhibitors
8
affinity ace2
8

Similar Publications

Introduction: Vision language models (VLMs) combine image analysis capabilities with large language models (LLMs). Because of their multimodal capabilities, VLMs offer a clinical advantage over image classification models for the diagnosis of optic disc swelling by allowing a consideration of clinical context. In this study, we compare the performance of non-specialty-trained VLMs with different prompts in the classification of optic disc swelling on fundus photographs.

View Article and Find Full Text PDF

Multi-Omics and Clinical Validation Identify Key Glycolysis- and Immune-Related Genes in Sepsis.

Int J Gen Med

September 2025

Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.

Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.

Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.

View Article and Find Full Text PDF

Accurate differentiation between persistent vegetative state (PVS) and minimally conscious state and estimation of recovery likelihood in patients in PVS are crucial. This study analyzed electroencephalography (EEG) metrics to investigate their relationship with consciousness improvements in patients in PVS and developed a machine learning prediction model. We retrospectively evaluated 19 patients in PVS, categorizing them into two groups: those with improved consciousness ( = 7) and those without improvement ( = 12).

View Article and Find Full Text PDF

Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.

View Article and Find Full Text PDF

Introduction: Spinal cord injury (SCI) presents a significant burden to patients, families, and the healthcare system. The ability to accurately predict functional outcomes for SCI patients is essential for optimizing rehabilitation strategies, guiding patient and family decision making, and improving patient care.

Methods: We conducted a retrospective analysis of 589 SCI patients admitted to a single acute rehabilitation facility and used the dataset to train advanced machine learning algorithms to predict patients' rehabilitation outcomes.

View Article and Find Full Text PDF