Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding the mechanistic interplay between antibodies and invading pathogens is essential for vaccine development. Current methods are labour and time intensive and limited by sample preparation bottlenecks. Here we present microfluidic electron microscopy-based polyclonal epitope mapping (mEM), which combines microfluidics with single-particle electron microscopy for the structural characterization of immune complexes using small volumes of sera (<4 µl). First, we used mEM to map polyclonal antibodies present in sera from infected and vaccinated individuals against five viral glycoproteins using negative-stain electron microscopy. The mEM detected a greater number of epitopes compared with conventional polyclonal epitope structural mapping methods. Second, we used mEM and cryo-electron microscopy to characterize two coronavirus spikes and one HA glycoprotein with and without polyclonal antibodies. Finally, we mapped individual antibody responses over time in mice vaccinated with human immunodeficiency virus envelope N332-GT5. mEM enables the rapid, high-throughput mapping of antibodies targeting a broad range of glycoproteins, facilitating a better understanding of infection and guiding structure-based vaccine design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12404239PMC
http://dx.doi.org/10.1038/s41551-025-01411-xDOI Listing

Publication Analysis

Top Keywords

electron microscopy
8
microfluidics combined
4
combined electron
4
microscopy rapid
4
rapid high-throughput
4
high-throughput mapping
4
mapping antibody-viral
4
antibody-viral glycoprotein
4
glycoprotein complexes
4
complexes understanding
4

Similar Publications

Amyloidosis encompasses a spectrum of rare disorders characterized by extracellular amyloid deposition. Achieving an accurate early diagnosis of systemic amyloidosis necessitates biopsy-specific pathological evaluation. Formalin-fixed, paraffin-embedded liver biopsy specimens were examined using Congo red staining, electron microscopy, immunohistochemistry (IHC), immunofluorescence, and Congo red-assisted laser microdissection with mass spectrometry (LMD/MS).

View Article and Find Full Text PDF

Background: Kaempferol (KAE), a bioactive flavonoid, has limited solubility and stability in water. Zein-gum arabic (GA) nanoparticles (NPs) are promising carriers for KAE, but the influence of preparation methods on their structure and properties remains unclear. This study investigated the effect of preparation method on the structure and properties of KAE-loaded zein-GA NPs.

View Article and Find Full Text PDF

This study aimed to create multifunctional nanoparticles (NPs), specifically AS1411@MPDA-Len-Cy5.5 (AMLC), for the purpose of developing effective strategies for treating hepatocellular carcinoma (HCC) through targeted therapy and photothermal therapy (PTT). The study involved synthesizing mesoporous polydopamine (MPDA)-NPs, loading lenvatinib (Len) and Cy5.

View Article and Find Full Text PDF

Unravelling the molecular network structure of biohybrid hydrogels.

Mater Today Bio

October 2025

Leibniz Institute of Polymer Research Dresden, Division Polymer Biomaterials Science, Max Bergmann Center of Biomaterials Dresden, 01069, Dresden, Germany.

Glycosaminoglycan-based biohybrid hydrogels represent a powerful class of cell-instructive materials with proven potential in tissue engineering and regenerative medicine. Their biomedical functionality relies on a nanoscale polymer network that standard microscopy techniques cannot resolve. Here, we introduce an advanced analytical approach that integrates transmission electron microscopy, X-ray scattering, and computer simulations to directly and quantitatively characterize the nanoscale molecular network structure of these hydrogels.

View Article and Find Full Text PDF

The surface structure of an electrocatalyst plays a crucial role in determining the activity. As a model system, gold has been widely investigated as an electro-oxidation catalyst, although there has been much less research on the oxygen evolution reaction (OER) in the potential region of gold oxidation. Here, we combine voltammetric scanning electrochemical cell microscopy (SECCM) and electron backscatter diffraction (EBSD), at different spatial and angular resolutions, respectively, to correlate the local crystallographic structure of polycrystalline goldfocusing on grains close to (113), (011), (114), and (111) orientationswith the electrocatalytic behavior for the OER.

View Article and Find Full Text PDF