98%
921
2 minutes
20
Maize is an important food and fuel crop globally. Ear rots, caused by fungal pathogens, are some of the most detrimental maize diseases, due to reduced grain yield and the production of harmful mycotoxins. Mycotoxins are naturally occurring toxins produced by certain fungal species that can cause acute and chronic health issues in humans and animals that consume mycotoxin-contaminated grain. Pathogens can infect the developing ear through silks, or through wounds in the ears produced by pests. Plants naturally develop genetic resistance to pathogens. The maize genes involved in resistance to the pathogen may be different, depending on whether the ear was infected via silks or wounds. To differentiate between these two forms of resistance, natural infections can be reproduced by injecting inoculum through the silk channel, or by producing wounds using a needle, and introducing inoculum directly onto developing ears. Our protocol describes a technique used to inoculate developing maize ears with , one of the fungal species that causes ear rot. We describe both silk channel and side needle inoculation techniques. Our protocol uses a backpack inoculator for both methods of infection, allowing for high-throughput inoculations, which are necessary for large field experiments. After harvest, the ears are visually rated on a percentage of disease scale. The protocol results in quantitative data that can be used for research on elucidating genetic resistance to fungal pathogens to assist breeding selections, and to understand plant-pathogen interactions of ear rots in maize.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1101/pdb.prot108641 | DOI Listing |
Front Plant Sci
August 2025
Hainan Institute of Northwest A&F University, Sanya, Hainan, China.
Introduction: Maize is a cornerstone of global agriculture, essential for ensuring food security, driving economic development, and meeting growing food demands. Yet, how to achieve optimal yield remains a multifaceted challenge influenced by biotic, environmental, and genetic factors whose comprehensive understanding is still evolving.
Methods: QTL mapping of eight essential yield traits was conducted across four environments - Sanya (SY) in 2021, and Yangling (YaL), Yulin (YuL), and Weinan (WN) in 2022 - using two types of populations: a KA105/KB024 recombinant inbred line (RIL) population and two immortalized backcross populations (IB1 and IB2) derived from the RILs by crossing with their respective parents.
Plants (Basel)
August 2025
Facultad de Ciencias Agronómicas, Campus V., Universidad Autónoma de Chiapas (UNACH), Villaflores 30470, Chiapas, Mexico.
Purple (maize husk) in native maize represents a phenotypic trait of cultural and agronomic significance within traditional Mesoamerican agroecosystems. This study evaluated the phenotypic expression of anthocyanins in vegetative and reproductive tissues of ten native maize genotypes, including inter-parental crosses derived from both pigmented and non-pigmented lines. Field trials were conducted under rainfed conditions in Chiapas, Mexico.
View Article and Find Full Text PDFBMC Plant Biol
August 2025
Department of Food and Drug, University of Parma, Parma, Italy.
Background: Fusarium Ear Rot is one of the major diseases affecting maize worldwide, causing decreases in yield and fumonisins accumulation in crops. In this framework, identifying resistance traits in plants is of great interest for breeding programs. To delve deeperr into the role of lipids on resistance to Fusarium Ear Rot, a lipidomic study has been performed using resistant and susceptible maize recombinant inbred lines.
View Article and Find Full Text PDFGenes (Basel)
August 2025
College of Agriculture, Northeast Agricultural University, Harbin 150030, China.
Background: Maize is an important food crop in cold regions, especially in Northeast China. However, its short growth period and low-temperature stress pose challenges to the breeding of high-yield hybrids. With climate warming, the maize planting area continues to expand to high latitudes.
View Article and Find Full Text PDFPlant Genome
September 2025
Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
Fusarium graminearum colonizes the maize ear, causing Gibberella ear rot (GER) and producing harmful mycotoxins, including deoxynivalenol (DON) and zearalenone (ZEA). The disease can be managed in part by breeding and planting resistant maize cultivars. Resistance to GER is a quantitative and complex trait.
View Article and Find Full Text PDF