Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Organoids have emerged as a powerful in vitro model system for biomedical research, providing a physiologically relevant alternative to traditional cell lines. Intestinal organoids recapitulate the complex cellular composition and function of the intestinal epithelium, making them valuable for studying intestinal biology and disease. These three-dimensional (3D) cultures can be differentiated to contain all the major intestinal cell types-including enterocytes, Paneth cells, goblet cells, stem cells, enteroendocrine cells, and tuft cells-allowing for more accurate modeling of intestinal function. However, their 3D structure presents challenges for high-resolution imaging and histological analysis. Common methods for embedding intestinal organoids, such as frozen sectioning or pre-embedding in semi-solid gels, can compromise morphology and sectioning integrity. To address these limitations, we present an optimized paraffin-embedding protocol that provides robust immunofluorescent staining and imaging of intestinal organoids while preserving cellular architecture. This approach provides researchers with an improved tool for analyzing organoid-based models of intestinal function and disease.

Download full-text PDF

Source
http://dx.doi.org/10.1007/7651_2025_633DOI Listing

Publication Analysis

Top Keywords

intestinal organoids
16
intestinal
9
intestinal function
8
organoids
5
paraffin embedding
4
embedding histological
4
histological staining
4
staining intestinal
4
organoids organoids
4
organoids emerged
4

Similar Publications

Food nutrition and safety are fundamental to the food industry, and the development of appropriate research models is crucial. Unlike traditional animal models, the innovative organoid/organ-on-a-chip model possess distinct human-like characteristics and genomic stability, which have garnered significant attention in food research. In this review, we conduct a comparative analysis between organoids and traditional animal and 2D cell models.

View Article and Find Full Text PDF

Enterohemorrhagic (EHEC), a pathotype within the Shiga toxin-producing (STEC) group, is a major etiological agent of severe gastrointestinal illness and life-threatening sequelae, including hemolytic uremic syndrome. Although insights into EHEC pathogenesis have been gained through traditional 2D cell culture systems and animal models, these platforms are limited in their ability to recapitulate human-specific physiological responses and tissue-level interactions. Recent progress in three-dimensional (3D) cell culture systems, such as spheroids, organoids, and organ-on-a-chip (OoC) technologies, has enabled more physiologically relevant models for investigating host-pathogen dynamics.

View Article and Find Full Text PDF

Background: Intestinal cells receive incoming signals from neighboring cells and microbial communities. Upstream signaling pathways transduce these signals to reach transcription factors (TFs) that regulate gene expression. In inflammatory bowel disease (IBD), most single nucleotide polymorphisms (SNPs) are in non-coding genomic regions containing TF binding sites.

View Article and Find Full Text PDF

Background & Aims: The suckling-to-weaning dietary transition is a key step in intestinal development. The aim of our study was to identify the transcriptome changes induced in each cell type of the intestinal epithelium at the onset of solid food ingestion.

Methods: We compared the single-cell transcriptome of epithelial cells isolated from the caecum of age-matched littermate suckling male rabbits ingesting or not solid food.

View Article and Find Full Text PDF

Arachidonic acid/Alox15 alleviates the progression of ulcerative colitis by modulating ferroptosis levels.

Biochem Biophys Res Commun

August 2025

Department of General Surgery, Jinling Clinical Medical College, Nanjing Medical University, Nanjing City, Jiangsu Province, China. Electronic address:

Background: Ulcerative colitis (UC) is a long-lasting, nonspecific inflammatory bowel disease involving continuous, diffuse intestinal mucosal injury. The pathogenesis of UC involves genetic polymorphism, oxidative stress, immune response, and microbial infection. Ferroptosis participates in UC progression as a novel non-apoptotic cell death, and its specific mechanism in UC progression deserves further investigation.

View Article and Find Full Text PDF