The peptide from C- Phycocyanin alleviates myocardial ischemia-reperfusion injury by suppressing ferroptosis via upregulating UCHL3.

Free Radic Biol Med

Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266100, Shandong, China; The Affiliated Cardiovascular Hospital of Qingdao University, No. 5 Zhiquan Road, Qingdao, 266071, China. Electronic address:

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Myocardial ischemia-reperfusion injury (MIRI) constitutes an essential hurdle following reperfusion therapy for acute myocardial infarction (AMI), which the mechanism involves oxidative stress, inflammatory response, calcium overload, and ferroptosis, etc. MAQAAEYYR (P2), a kind of marine-derived bioactive peptide from C-Phycocyanin (C-PC), exhibits remarkable antioxidant properties. Due to its low molecular weight, P2 exhibits superior bioavailability compared to C-PC. A previous study has confirmed that C-PC could alleviate ischemia-reperfusion (I/R)-induced cardiac dysfunction. However, whether the peptide derived from C-PC has the potential to protect the heart against ischemia-reperfusion injury deserves consideration and investigation. In this study, C57BL/6 male mice and H9C2 cardiomyocytes were used to construct myocardial ischemia-reperfusion (MI/R) and oxygen-glucose deprivation/reoxygenation (OGD/R) injury models in vivo and in vitro respectively. We demonstrated that P2 significantly improved myocardial function, myocardial enzymes, myocardial fibrosis, and mitochondrial ultrastructure, while mitigating oxidative stress damage and ferroptosis caused by MI/R. In vitro, P2 markedly enhanced cell viability, suppressed the generation of reactive oxygen species (ROS) and malondialdehyde (MDA), elevated glutathione (GSH) and superoxide dismutase (SOD) levels, and prevented the occurrence of ferroptosis. Furthermore, we revealed that ubiquitin carboxyl terminal hydrolase L3 (UCHL3) knockdown reversed the protective effect of P2 against OGD/R-induced cardiomyocyte ferroptosis. This study demonstrated that P2 protects the myocardium against ischemia-reperfusion injury and mitigates ferroptosis by upregulating UCHL3. It provides a foundation for the potential application prospects of marine-derived bioactive peptides in cardiovascular disease management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2025.05.419DOI Listing

Publication Analysis

Top Keywords

ischemia-reperfusion injury
16
myocardial ischemia-reperfusion
12
ferroptosis upregulating
8
upregulating uchl3
8
oxidative stress
8
marine-derived bioactive
8
myocardial
7
ischemia-reperfusion
6
ferroptosis
6
injury
5

Similar Publications

Heart failure (HF) is a multifactorial and pathophysiological complex syndrome, involving not only neurohormonal activation but also oxidative stress, chronic low-grade inflammation, and metabolic derangements. Central to the cellular defence against oxidative damage is nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that orchestrates antioxidant and cytoprotective responses. Preclinical in vitro and in vivo studies reveal that Nrf2 signalling is consistently impaired in HF, contributing to the progression of myocardial dysfunction.

View Article and Find Full Text PDF

Mechanism of post cardiac arrest syndrome based on animal models of cardiac arrest.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

May 2025

Scool of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072.

Cardiac arrest (CA) is a critical condition in the field of cardiovascular medicine. Despite successful resuscitation, patients continue to have a high mortality rate, largely due to post CA syndrome (PCAS). However, the injury and pathophysiological mechanisms underlying PCAS remain unclear.

View Article and Find Full Text PDF

In the field of lung transplantation (LTx), the survival of lung transplant recipients (LTRs) is limited by events such as primary graft dysfunction (PGD), infections, and acute rejection (AR), which promote the development of chronic lung allograft dysfunction (CLAD). Extracellular vesicles (EVs), including exosomes and microvesicles, have emerged as key players in LTx because of their roles in immune regulation, inflammation, and antigen presentation. EVs carry immunologically active molecules such as MHC class I/II proteins, cytokines, and lung self-antigens (SAgs), suggesting their involvement in infections and both AR and CLAD.

View Article and Find Full Text PDF

The GPR120 agonist TUG-891 mitigates ischemic brain injury by attenuating endoplasmic reticulum stress and apoptosis via the PI3K/AKT signaling pathway.

Neurotherapeutics

September 2025

Department of Neurology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, 100191, China; Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking Universit

Extensive research has confirmed that omega-3 fatty acids provide cardiovascular protection primarily by activating the G protein-coupled receptor 120 (GPR120) signaling pathway. However, natural activators of this receptor often lack sufficient strength and precision. TUG-891, a recently synthesized selective GPR120 activator, has displayed significant therapeutic potential in multiple disease.

View Article and Find Full Text PDF

Background: Lung ischemia-reperfusion injury (LIRI) is a pathological condition characterized by aggravated oxidative-inflammatory tissue damage that occurs upon blood flow restoration after ischemia. LIRI can lead to severe complications, including primary graft dysfunction in lung transplants and multi-organ failure. However, current treatments remain limited.

View Article and Find Full Text PDF