Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Breast cancer is a highly heterogeneous disease, characterized by tumor and nontumor cells at various cell states. Ecotyper is an innovative machine learning framework that quantifies the tumor microenvironment and delineates the tumor ecosystem, demonstrating clinical significance. However, further validation is needed in breast cancer.

Methods: Ecotyper was applied to identify multiple cellular states and tumor ecotypes using large-scale breast cancer bulk sequencing data, followed by a detailed analysis of their associations with clinical classification, molecular subtypes, survival prognosis, and immunotherapy response. Identified subtypes were further characterized using single-cell and spatial data sets to reveal molecular profiles.

Results: In a comprehensive analysis of 6578 breast cancer samples from four data sets, Ecotyper identified 69 cellular states and 10 tumor ecotypes. Of these, 37 cellular states significantly correlated with overall survival. Notably, specific states within epithelial cells, macrophages/monocytes, and fibroblasts were linked to a worse prognosis. CE2 abundance was identified as the most significant marker indicating unfavorable prognosis and was further validated in an additional data set of 116 HER2-negative patients. These biomarkers also indicated the efficacy of neoadjuvant immunotherapy in breast cancer. CE2-high cancers were characterized by an abundance of basal-like epithelial cells, scant lymphocytic infiltration, and activation of hypoxia signaling. Single-cell analysis showed that CE2-high areas were rich in SPP1-positive tumor-associated macrophages(TAM), basal-like epithelial cells, and hypoxic cancer-associated fibroblasts(CAF). Spatially, these regions were often peripheral in triple-negative breast cancer, adjacent to fibrotic/necrotic zones. Multiplex immunofluorescence confirmed the enrichment of SPP1+CD68+TAM and HIF1A+SMA+CAF in hypoxic triple-negative breast cancer (TNBC) regions.

Conclusions: Ecotyper identified novel biomarkers for breast cancer prognosis and treatment prediction. The CE2-high region may represent a hypoxic immune-suppressive niche.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12107130PMC
http://dx.doi.org/10.1002/cai2.70013DOI Listing

Publication Analysis

Top Keywords

breast cancer
32
tumor ecotypes
12
cellular states
12
epithelial cells
12
breast
9
biomarkers breast
8
cancer
8
states tumor
8
data sets
8
ecotyper identified
8

Similar Publications

Objective: This study aimed to probe the role of Shenling Baizhu powder (SLBZP) in inhibiting breast cancer (BC) lung metastasis, focusing on epithelial-to-mesenchymal transition (EMT) and ferroptosis.

Methods: BC 4T1 cells were treated with low (3.13 µg/mL) and high (12.

View Article and Find Full Text PDF

Breast cancer (BC) is one of the main causes of cancer-related death in women. The purpose of this study was to evaluate the expression of miR-605-5p in BC and its diagnostic and prognostic value. BC patients and healthy individuals who met the study criteria were included.

View Article and Find Full Text PDF

Noncoding RNA regulatory networks play crucial roles in human breast cancer. The aim of this study was to establish a network containing multi-type RNAs and RBPs in triple-negative breast cancer (TNBC). Differential expression analyses of lncRNAs, miRNAs, and genes were performed using the GEO2R tool.

View Article and Find Full Text PDF

Invasive ductal carcinoma (IDC) is a major type of breast cancer. The utilization of inhibitors targeting histone methyltransferases introduces novel therapeutic avenues for the treatment of cancer. Immunohistochemistry, Western blot, and reverse transcription quantitative polymerase chain reaction experiments were applied to assess the levels of EHMT2 in IDC and adjacent tissues.

View Article and Find Full Text PDF

Nanomedicine-Mediated Therapies to Target Cancer Stem Cells: An Emerging Technology.

Crit Rev Ther Drug Carrier Syst

January 2025

Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.

Cancer stem cells (CSCs) are a category of cancer cells endowed with the ability to renew themselves, undergo unregulated growth, and exhibit a differentiation capacity akin to that of normal stem cells. CSCs have been linked with tumor metastasis and cancer recurrence due to their ability to elude immune monitoring. As a result, targeting CSCs specifically may improve the efficacy of cancer therapy.

View Article and Find Full Text PDF