98%
921
2 minutes
20
The soil microbial community plays a crucial role in the elemental cycling and energy flow within wetland ecosystems. The temporal dynamics and spatial distribution of soil microbial communities are central topics in ecology. While numerous studies have focused on wetland microbial community structures at low altitudes, microbial diversity across seasons and depths and their environmental determinants remain poorly understudied. To test the seasonal variation in microbial communities with contrasting seasonal fluxes of greenhouse gases, a total of 36 soil samples were collected from different depths in the Namco wetland on the Tibetan Plateau across four seasons. We found significant seasonal variation in bacterial community composition, most pronounced in the Winter, but not in archaea. In particular, Proteobacteria decreased by 11.5% in Winter compared with other seasons ( < 0.05). The bacterial alpha diversity showed hump-shaped seasonal patterns with lower diversity in Winter, whereas archaea showed no significant patterns across depths. A PERMANOVA further revealed significant differences in the bacterial community structure between Winter and the other three seasons ( < 0.05). In addition, bacterial and archaeal community structures differed between surface (0-5 cm) and deeper (5-30 cm) soils ( < 0.01). Redundancy analysis showed that soil total nitrogen, soil total phosphorus, and total soil organic carbon significantly influenced bacteria and archaea ( < 0.05). Furthermore, soil moisture content and temperature strongly affected the bacterial community structure ( < 0.001). Our findings highlighted the seasonal variation in the microbial community and the profound influence of soil moisture and temperature on microbial structure in alpine wetlands on the Tibetan Plateau.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12114076 | PMC |
http://dx.doi.org/10.3390/microorganisms13050962 | DOI Listing |
Mol Ecol
September 2025
State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Shaanxi, People's Republic of China.
Increasing evidence indicates that the loss of soil microbial α-diversity triggered by environmental stress negatively impacts microbial functions; however, the effects of microbial α-diversity on community functions under environmental stress are poorly understood. Here, we investigated the changes in bacterial and fungal α- diversity along gradients of five natural stressors (temperature, precipitation, plant diversity, soil organic C and pH) across 45 grasslands in China and evaluated their connection with microbial functional traits. By quantifying the five environmental stresses into an integrated stress index, we found that the bacterial and fungal α-diversity declined under high environmental stress across three soil layers (0-20 cm, 20-40 cm and 40-60 cm).
View Article and Find Full Text PDFGlob Chang Biol
September 2025
Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands.
Droughts are increasing with climate change, affecting the functioning of terrestrial ecosystems and limiting their capacity to mitigate rising atmospheric CO levels. However, there is still large uncertainty on the long-term impacts of drought on ecosystem carbon (C) cycling, and how this determines the effect of subsequent droughts. Here, we aimed to quantify how drought legacy affects the response of a heathland ecosystem to a subsequent drought for two life stages of Calluna vulgaris resulting from different mowing regimes.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar.
Cancer is a multifaceted disease driven by a complex interplay of genetic predisposition, environmental factors and lifestyle habits. With the accelerating pace of cancer research, the gut microbiome has emerged as a critical modulator of human health and immunity. Disruption in the gut microbial populations and diversity, known as dysbiosis, has been linked with the development of chronic inflammation, oncogenesis, angiogenesis and metastasis.
View Article and Find Full Text PDFFront Immunol
September 2025
Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
Background: People living with HIV(PLWH) are a high-risk population for cancer. We conducted a pioneering study on the gut microbiota of PLWH with various types of cancer, revealing key microbiota.
Methods: We collected stool samples from 54 PLWH who have cancer (PLWH-C), including Kaposi's sarcoma (KS, n=7), lymphoma (L, n=22), lung cancer (LC, n=12), and colorectal cancer (CRC, n=13), 55 PLWH who do not have cancer (PLWH-NC), and 49 people living without HIV (Ctrl).
Front Immunol
September 2025
Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
In the last decades, immunotherapy has revolutionized cancer treatment. Despite its success, a significant number of patients fail to respond, and the underlying causes of ineffectiveness remain poorly understood. Factors such as nutritional status and body composition are emerging as key predictors of immunotherapy outcomes.
View Article and Find Full Text PDF