Research on the Optimization and Regulation Mechanism of Waterproofing, Impermeability, and Water Vapor Transmission Property of Mortar Based on Different Modifiers.

Materials (Basel)

Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

It is challenging for mortar to simultaneously enhance the transmission property of water vapor while maintaining excellent waterproofness and impermeability. However, in some applications, both are necessary. Therefore, three different kinds of modifiers, i.e., cementitious capillary crystalline waterproof materials (XYPEX), γ-methacryloxy-propyl-trimethoxy-silane (KH570), and styrene-butadiene rubber latex (SB), are employed to explore how modified mortar can possess excellent waterproofness, impermeability, and the water vapor transmission property simultaneously. Combining characterization techniques, the influencing factors of these three properties are studied. The results indicate that XYPEX promotes the formation of hydration products within pores, improves waterproofness and impermeability, but decreases the water vapor transmission property. KH570 introduces numerous pores ranging from 0.1 to 5 micrometers and enhances the hydrophobicity of mortar; at 1.25% and 2.5% contents, the modified mortar exhibits excellent waterproofness and water vapor transmission property but poor impermeability. SB introduces numerous air pores and forms polymer films; at 20% content, the modified mortar exhibits excellent waterproofness and water vapor transmission property, with impermeability remaining unchanged, making SB a favorable modifier that combines these three properties. Finally, the mechanisms of these three properties are discussed, which provides a theoretical reference for the control of mortar's waterproofing, impermeability, and water vapor transmission. The selection of modifiers is based on the actual performance requirements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113140PMC
http://dx.doi.org/10.3390/ma18102363DOI Listing

Publication Analysis

Top Keywords

water vapor
28
vapor transmission
24
transmission property
24
excellent waterproofness
16
impermeability water
12
waterproofness impermeability
12
modified mortar
12
three properties
12
waterproofing impermeability
8
introduces numerous
8

Similar Publications

Cleaning: A Retail and Foodservice Perspective.

Food Prot Trends

June 2025

Dept. of Food, Nutrition, and Packaging Sciences, 220 Poole Agriculture Center, Clemson University, Clemson, SC 29634, USA.

Surface sanitation is used to mitigate the transmission of infectious agents and is the collective process of washing a surface then rinsing it with potable water to remove debris and residual cleaning agent. If necessary and depending on surface type, contamination event, or regulatory requirement, an antimicrobial agent (chemical sanitizer or disinfectant) registered with the Environmental Protection Agency or heat (steam or hot water) can be applied to the surface to reduce or inactivate pathogenic microorganisms. The absence of universally defined terms and regulations pertaining to the various stages of surface sanitation has resulted in confusion, potentially leading to inadequate sanitation practices and persistent surface contamination.

View Article and Find Full Text PDF

Sub-diurnal asymmetric warming has amplified atmospheric dryness since the 1980s.

Nat Commun

September 2025

State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.

Rising atmospheric vapor pressure deficit (VPD)-a measure of atmospheric dryness, defined as the difference between saturated vapor pressure (SVP) and actual vapor pressure (AVP)-has been linked to increasing daily mean near-surface air temperatures since the 1980s. However, it remains unclear whether the faster increases in daily maximum temperature (T) relative to daily minimum temperature (T) have contributed to rising VPD. Here, we show that the faster rise in T compared with T over land has intensified VPD from 1980 to 2023.

View Article and Find Full Text PDF

Starch-based biopolymer films with nitrogen-doped carbon quantum dots for enhanced barrier functions via surface microarchitectures.

Int J Biol Macromol

September 2025

Department of Nanoscience and Nanoengineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey; Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey. Electronic address:

This study presents the development of multifunctional starch-based biopolymer films reinforced with nitrogen-doped carbon quantum dots (N-CQDs), synthesized via a hydrothermal method, and exhibiting a high quantum yield (~70 %). N-CQDs were incorporated into the starch matrix at varying concentrations (0.1-1.

View Article and Find Full Text PDF

Encapsulation of non-noble bimetallic nanoparticles within a zeolite framework can improve the stability and accessibility of active sites, but the single microporous structure and poor metal stability decreased the catalytic performance of the catalyst. Here, 3D hierarchical ZSM-5 zeolite encapsulated NiCo nanoparticles (NiCo@3DHZ5) were synthesized by Bottom-up confined steam-assisted crystallization (SAC) one-pot hydrothermal method and applied to the hydrodeoxygenation of vanillin. A series of characterizations showed that highly stable alloyed NiCo nanoparticles were encapsulated in a framework of 3DHZ5, the strong metal-zeolite interactions resulted in highly dispersed NiCo nano-alloys facilitated hydrogen adsorption and spillover of active hydrogen atoms, and the 3D hierarchical structure promoted oxygenated substrate diffusion, the synergy interaction between the alloy particles confined in the 3DHZ5 pores and the acidic sites on the zeolite surface promoted the selective conversion of vanillin.

View Article and Find Full Text PDF

Decoupling Transport of Salt Ions and Water in Hierarchically Structured Hydrogel for High Salinity Desalination.

Adv Mater

September 2025

Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.

Global water scarcity demands next-generation desalination technologies that transcend the limitations of energy-intensive processes and salt accumulation. Herein, a groundbreaking interfacial solar steam generation system capable of simultaneous hypersaline desalination and ambient energy harvesting is introduced. Through hierarchical hydrogel architecture incorporating a central vertical channel and radial channels with gradient apertures, the design effectively decouples salt transport and water evaporation: solar-driven fluid convection directs water outward for evaporation, while inward salt migration prevents surface crystallization and redistributes excess heat.

View Article and Find Full Text PDF