98%
921
2 minutes
20
IAS imposes significant impacts on native ecosystems and economies. Current assessment methods for economic losses predominantly rely on habitat suitability estimation and database extrapolation, often lacking integration of causal inference and dynamic spatial drivers. , a pervasive invasive pest in Jiangsu Province, China, exemplifies this challenge through its rapid spread and multi-sector economic impacts. To address these limitations, we innovatively integrated three models: (1) Difference-in-Differences (DID) quantified causal economic impacts through spatiotemporal comparison of infested/non-infested areas; (2) GeoDetector identified key spatial drivers via stratified heterogeneity analysis; (3) MaxEnt projected ecological suitability under climate scenarios. The synergy enabled dynamic loss attribution: GeoDetector optimized DID's variable selection, while MaxEnt constrained loss extrapolation to ecologically plausible zones, achieving multi-scale causal-spatial-climate integration absent in conventional approaches. In Jiangsu Province, caused CNY 89.2 million in primary sector losses in 2022, with forestry disproportionately impacted, accounting for 58.3% of the total losses. The DID model revealed nonlinear temporal impacts indicating a loss of 0.163 forestry per 30 m grid, while MaxEnt projected 22% habitat contraction under the SSP5-8.5 scenario by 2060, which corresponds to climate-adjusted losses of CNY 147 million. Spatial prioritization identified northern Jiangsu (e.g., Xuzhou, Lianyungang) as high-risk zones requiring immediate intervention. The framework enables spatially explicit prioritization of containment efforts-grids identified as high-risk necessitate a tripling of funding in comparison to low-risk areas. And SSP-specific loss projections support dynamic budget planning under climate uncertainty. By integrating causal attribution, ecological realism, and climate resilience, this model transforms IAS management from reactive firefighting to proactive, data-driven governance. It provides a replicable toolkit for balancing ecological preservation and economic stability in the Anthropocene.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109252 | PMC |
http://dx.doi.org/10.3390/biology14050552 | DOI Listing |
Future Oncol
September 2025
Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, Yangzhou, China.
Immune checkpoint therapy has demonstrated significant potential in the treatment of various solid tumors. Among these, tumor-induced immunosuppression mediated by programmed cell death protein 1 (PD-1) represents a critical checkpoint. PD-1/programmed death-ligand 1 (PD-L1) inhibitors have been proven to exhibit substantial efficacy in solid tumors such as melanoma and bladder cancer.
View Article and Find Full Text PDFChembiochem
September 2025
Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
Natural products exhibit a wide range of biological activities and are the crucial resources for drug development and compound modification. Cytochrome P450 enzymes (P450s, CYP) are a class of multifunctional and stereoselective biocatalysts that utilize heme as a cofactor and can be employed in the biosynthesis of natural products. With the development of biotechnology, P450s have been widely applied in the synthesis of natural products.
View Article and Find Full Text PDFNano Lett
September 2025
Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
Ampere-level electrocatalytic nitrate reduction to ammonia (eNRA) offers a carbon-neutral alternative to the Haber-Bosch process. However, its energy efficiency is critically hampered by the inherent conflict between the reaction and diffusion. Herein, we propose a reaction-diffusion-coupled strategy implemented on a well-tailored CuCoNiRuPt high-entropy alloy aerogel (HEAA) to simultaneously realize energy barrier homogenization and accelerate mass transport, endowing ampere-level eNRA with a high energy efficiency.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2025
Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Wanjiang Emerging Industry Technology Development Center, Tongling 244000, China; Collaborative Innovatio
Cell Prolif
September 2025
Department of Cardiology & Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
The mature mammalian heart has limited ability for self-repair and regeneration. Here, we establish phosphoglycerate dehydrogenase (PHGDH) as a crucial key for cardiomyocyte proliferation, with diminishing expression during postnatal cardiac development. PHGDH overexpression promoted myocardial regeneration and cardiac function in apical resection-operated mice, whereas inhibition by NCT-503 inhibited these processes.
View Article and Find Full Text PDF