Influence of one-step enzymatic modification on the structure, physicochemical, and functional properties of dietary fiber from corn husk rich in (hemi)cellulose.

Int J Biol Macromol

Stake Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Jimo District, Qingdao City, PR China. Electronic address:

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study systematically evaluated enzymatic modification of corn husks rich in hemicellulose using different sources of cellulases for producing soluble dietary fiber (SDF) by comparing the differences in yields and characteristics of obtained polysaccharides, thereby developing a novel one-step enzymatic modification process without starch and protein removal pretreatment that was commonly used in traditional enzymatic modification processes. It was shown that Trichoderma reesei cellulases showed a better modification effect than Penicillium oxalicum cellulases, especially T. reesei SCB-18 cellulase, producing high-yield SDF with superior physicochemical and structural characteristics and functional properties such as high water-holding capacity and adsorption capacities for cholesterol and nitrite ion, good thermal stability, low crystallinity, and molecular weight through this one-step process. Increased porous structure and functional groups in the SDFs, which were caused by the degradation of cellulose and hemicelluloses in corn husk, should partially explain the improvement in physicochemical and functional properties. This study also evaluated the physicochemical and functional properties of insoluble dietary fiber (IDF) obtained by this process. It provides a simple and feasible enzymatic modification process to produce SDF and IDF from corn husks efficiently and at a low cost, thereby realizing the high-value application of corn husks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.144683DOI Listing

Publication Analysis

Top Keywords

enzymatic modification
20
functional properties
16
physicochemical functional
12
dietary fiber
12
corn husks
12
one-step enzymatic
8
corn husk
8
rich hemicellulose
8
modification process
8
modification
6

Similar Publications

Wheat, a significant source of protein, can also induce various wheat-related allergic reactions (WRARs). Statistical data show significant spatiotemporal and geographical variations in the prevalence of WRARs. Studies reveal that hexaploid wheat exhibits notably higher allergenicity.

View Article and Find Full Text PDF

A Python-scripted software tool has been developed to help study the heterogeneity of gene changes, markedly or moderately expressed, when several experimental conditions are compared. The analysis workflow encloses a scorecard that groups genes based on relative fold-change and statistical significance, providing additional functions that facilitate knowledge extraction. The scorecard reports highlight unique patterns of gene regulation, such as genes whose expression is consistently up- or down-regulated across experiments, all of which are supported by graphs and summaries to characterize the dataset under investigation.

View Article and Find Full Text PDF

Somatic embryogenesis (SE) is an in vitro mass propagation system widely employed in plant breeding programs. However, its efficiency in many forest species remains limited due to their recalcitrance. SE relies on the induction of somatic cell reprogramming into embryogenic pathways, a process influenced by transcriptomic changes regulated, among other factors, by epigenetic modifications such as DNA methylation, histone methylation, and histone acetylation.

View Article and Find Full Text PDF

DNA data storage is a promising alternative to conventional storage due to high density, low energy consumption, durability, and ease of replication. While information can be encoded into DNA via synthesis, high costs and the lack of rewriting capability limit its applications beyond archival storage. Emerging "hard drive" strategies seek to encode data onto universal DNA templates without de novo synthesis, using methods such as DNA nanostructures and base modifications.

View Article and Find Full Text PDF

The Mediterranean Basin, a hotspot for tomato production, is one of the most vulnerable areas to climate change, where rising temperatures and increasing soil and water salinization represent major threats to agricultural sustainability. Thus, to understand the molecular mechanisms behind plant responses to this stress combination, an RNA-Seq analysis was conducted on roots and shoots of tomato plants exposed to salt (100 mM NaCl) and/or heat (42°C, 4 h each day) stress for 21 days. The analysis identified over 8000 differentially expressed genes (DEGs) under combined stress conditions, with 1716 DEGs in roots and 2665 in shoots being exclusively modulated in response to this specific stress condition.

View Article and Find Full Text PDF