98%
921
2 minutes
20
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies, with a five-year survival of under 10 % despite current therapies. Aggressive tumor biology, a desmoplastic stroma that limits drug delivery and immune cell infiltration, and profound resistance to apoptosis make it more complex to treat. Here, we describe a multi-layered system biology and drug discovery pipeline that integrates bulk genomics, single-cell spatial transcriptomics, proteomics, competing endogenous RNA (ceRNA) network analysis, and deep learning-driven quantitative structure-activity relationship (QSAR) modeling. By implementing this pipeline, we predicted that TNFRSF10A encodes for the TRAILR1 death receptor as a potential therapeutic target in PDAC. Mutational and expressional analysis also confirmed TNFRSF10A as a putative target in PDAC. Cancer cells within the PDAC microenvironment exhibit aberrantly elevated TNFRSF10A expression. Immune-excluded tumor niches and pro-survival signaling link this elevated expression. Using an advanced transformer-based deep learning approach, SELFormer, combined with QSAR analysis-based virtual screening, we identified previously unexplored FDA-approved drugs and natural compounds, i.e., Temsirolimus, Ergotamine, and capivasertib, with potential TRAILR1 modulatory effects. During molecular dynamics simulations, these repurposed candidates showed the highest binding affinities against TNFRSF10A for 300 ns. These showed favorable binding energies (MM-PBSA), minimal RMSD drift, PCA, and SASA. We propose TNFRSF10A as a therapeutically important PDAC vulnerability nurtured by spatially resolved expression patterns and dynamic molecular modeling. This study has used a novel integration of AI-implemented chemical modeling, high-throughput screening, and a multi-omics approach to unravel and pharmacologically target a cancer compartment-specific weakness in a notoriously drug-resistant cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204372 | PMC |
http://dx.doi.org/10.1016/j.compbiomed.2025.110432 | DOI Listing |
Adv Sci (Weinh)
September 2025
State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
Perineural invasion (PNI) is a common pathological characteristic of pancreatic ductal adenocarcinoma (PDAC), closely linked to postoperative recurrence, metastasis, and unfavorable prognosis. Nevertheless, the precise mechanisms that govern PNI in PDAC remain poorly elucidated. Here, group-specific component protein (GC) is identified as one of the most significantly upregulated genes related to PNI, primarily derived from malignant ductal cells compared to other cell types.
View Article and Find Full Text PDFMol Ther Oncol
September 2025
Christine Kühne - Center for Allergy Research and Education, 7265 Davos, Switzerland.
Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, is highly aggressive with limited curative options, primarily surgical resection. However, only about 20% of the tumors are resectable at diagnosis. Immunotherapies have largely failed in PDAC due to its immunosuppressive tumor microenvironment (TME).
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2025
Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba, 260-8675, Japan. Electronic address:
Pancreatic ductal adenocarcinoma (PDAC) cells exhibit high metabolic flexibility, enabling survival under glucose limitation by using alternative fuels such as fatty acids. Lipophagy, a selective form of autophagy targeting lipid droplets (LDs), supports mitochondrial respiration during such nutrient stress. Our previous study demonstrated that the LSD1 inhibitor SP-2509 disrupts lipophagy independently of LSD1 inhibition, leading to LD accumulation and ATP depletion in glycolysis-suppressed PDAC cells.
View Article and Find Full Text PDFPancreatology
August 2025
Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China. Electronic address:
Background: Pancreatic ductal adenocarcinoma (PDAC), the predominant form of pancreatic cancer, remains a therapeutic challenge. While GALNT4 (a member of the N-acetylgalactosaminyltransferases family) shows significant upregulation in PDAC cells, its precise oncogenic mechanisms remain poorly understood.
Methods: Bioinformatics analysis was performed to examine the expression of GALNT4 and MUC1 in pancreatic adenocarcinoma (PAAD) and to predict the glycosylation sites of MUC1.
Semin Oncol
September 2025
Departments of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, USA. Electronic address:
Chimeric antigen receptor (CAR) T-cell therapy has changed how we treat blood cancers but hasn't worked as well for solid tumors like pancreatic ductal adenocarcinoma (PDAC), mainly because these tumors are very aggressive and resistant to regular treatments. This review critically examines peer-reviewed studies to chart the evolution of immunotherapy in PDAC, emphasizing the unique barriers to effective CAR T-cell treatment and emerging strategies to overcome them. CAR T-cells that focus on tumor-related markers like mesothelin, HER2, and MUC1 have shown promise in early research models.
View Article and Find Full Text PDF