Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
: Whether intestinal epithelial cells can regulate distant adipose tissue remains a mystery. : Cold-stimulated intestinal epithelial cell-derived exosomes (Cold IEC-Exo) play a pivotal role in enhancing adipose thermogenesis and metabolic homeostasis, as demonstrated in this study. : IEC-Exo can accumulate in adipose tissue. Compared with IEC-Exo derived from room temperature mice (RT IEC-Exo), Cold IEC-Exo significantly enhanced the thermogenesis of adipose. In vitro, Cold IEC-Exo directly stimulated thermogenesis in primary adipocytes by elevating oxygen consumption rate, proton leak, and fatty acid uptake, with no effect on glucose uptake. Small RNA sequencing identified miR-674-3p as a key mediator enriched in Cold IEC-Exo. miR-674-3p mimicry replicated Cold IEC-Exo effects, augmenting expression, mitochondrial uncoupling, and fatty acid utilization in adipocytes. Local overexpression of miR-674-3p in BAT and sWAT via AAV in vivo enhanced thermogenesis and attenuated diet-induced glucose intolerance. : These findings establish that Cold IEC-Exo, via miR-674-3p transfer, drive adipose thermogenic activation and mitigate metabolic dysfunction, highlighting their therapeutic potential in obesity-related disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113151 | PMC |
http://dx.doi.org/10.3390/metabo15050324 | DOI Listing |