98%
921
2 minutes
20
The removal and recovery of low-concentration phosphates from water have become crucial due to the dual challenges of eutrophication and the phosphorus crisis. Herein, we engineered a highly efficient and recyclable phosphate trapping agent of LaCeOCO solid solution. The incorporation of Ce enhances the surface area and surface potential of LaCeOCO, providing abundant adsorption sites for phosphate. Surprisingly, we found that adjusting the Ce proportion affects the carbonate content, thereby influencing the anion-exchange capacity between carbonate and phosphate. Specifically, at 3 % Ce content (3 %-CeL), the carbonate ratio is maximized, resulting in an optimal sorption capacity (196.4 mg P/g) and a rapid removal rate (under 40 min) for phosphate, unaffected by interfering ions. Remarkably, 3 %-CeL achieved nearly 100 % phosphate removal efficiency in diverse water samples from sewage treatment plants, rivers, reservoirs, and groundwater. After five adsorption-desorption cycles, the phosphate removal and recovery efficiency of 3 %-CeL remained above 90 %. Mechanistic studies revealed that 3 % Ce content yielded the highest proportion of Ce/Ce, enabling greater carbonate binding for anion-exchange. This study proposes a high-performance phosphate trapping agent with broad applicability for treating actual waters and provides a new perspective on enhancing low-concentration phosphate removal in La-based materials through manipulating Ce ratio and valence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jes.2024.10.006 | DOI Listing |
Bioresour Technol
September 2025
Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China. Electronic address:
Bioclogging from organic accumulation significantly limits efficiency and longevity of constructed wetlands (CWs). In this study, hematite was introduced to enhance the oxidation of organics by dissimilatory iron reduction (DIR). Compared to gravel CWs (G-CWs), hematite CWs (H-CWs) enhanced the removal of COD, ammonium, and phosphate by 12 %, 46 %, and 72 %, while reducing CH and NO emissions by 69 % and 36 %.
View Article and Find Full Text PDFEnviron Res
September 2025
State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China. Electronic address:
Recent interest in amendments derived from industrial by-products has highlighted their potential for both resource recycling and heavy metal remediation. Phosphate tailings (PT), primarily dolomite-based solid waste with low utilization rates, offer a promising yet underexplored solution. This study pioneers the thermal modification of PT into a novel amendment, thermally modified phosphate tailings (TPT), to assess its adsorption performance, underlying mechanisms, and effectiveness in immobilizing heavy metals in soils.
View Article and Find Full Text PDFChemosphere
September 2025
Department of Materials Design and Innovation, University at Buffalo, NY, 14260, USA. Electronic address:
Bioremediation offers a sustainable strategy for mitigating heavy metal contamination in soil, but is often constrained by slow removal kinetics, limited uptake efficiency, and high implementation costs. This study investigates dried mycelium membranes, rich in surface-bound proteins and high surface area, as a promising biosorbent for in situ Pb(II) remediation in urban soils. Untreated mycelium membranes buried in soil achieved Pb(II) removal efficiencies of ∼70 % and ∼40 % at initial lead soil concentrations of 100 mg/kg and 1500 mg/kg, respectively, within eight days.
View Article and Find Full Text PDFACS Omega
September 2025
National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China.
Conventional acidizing struggles to remove complex, organic-rich scales in oil wells, and while strong organic solvents can help, their high cost and safety risks limit field use. To overcome these shortcomings, we developed a low-cost, safe permeability-enhanced-dispersion (PD) technique that first loosens and disperses the scale and then applies acid for thorough cleanup. The PD fluid (DL) contains a mutually soluble fatty alcohol amide phosphate dispersant (DL-F), ethanol, a surfactant blend, and a self-generating acid.
View Article and Find Full Text PDFWater Res
August 2025
State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Phosphorus is recognized as a major pollutant in municipal and domestic wastewater, but the effective removal of organic phosphorus (OP) using conventional wastewater treatment technologies is difficult. Herein, a novel visible light-enhanced Ti electrocoagulation (EC) technology was proposed for the removal of OP using 2-amino-ethyl phosphonic acid (AEP) as a model compound to elucidate the removal efficiency and mechanisms. The results showed that the irradiation under visible light (670 Lux) effectively enhanced the removal of AEP by Ti EC.
View Article and Find Full Text PDF