Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A multiple-image method is developed to accurately calculate the electrostatic interaction between neutral dielectric particles and a uniformly charged dielectric substrate. The difference in dielectric constants between the particle and the solvent medium leads to a reversal of polarization direction of the particle. The variance in dielectric constants between the solvent medium and the substrate causes a transition from attractive to repulsive forces between the particle and the substrate. A nonuniform electrostatic field is generated by the polarized charges on the substrate due to mutual induction. These characteristics of electrostatic manipulation determine whether particles are adsorbed onto the substrate or pushed away from it. The self-assembled particles tend to aggregate in a stable hexagonal structure on the substrate. These findings provide unique insights into self-assembly processes involving neutral particles on a dielectric substrate.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.111.045505DOI Listing

Publication Analysis

Top Keywords

dielectric substrate
12
electrostatic interaction
8
interaction neutral
8
neutral particles
8
particles dielectric
8
substrate
8
multiple-image method
8
dielectric constants
8
solvent medium
8
dielectric
6

Similar Publications

The functionalization of thin, flexible glass with piezoelectric oxides is a pathway toward transparent electromechanical devices. The crystallization of lead zirconate titanate thin films on thick, rigid glass is previously demonstrated using flash lamp annealing to selectively anneal the films, without damaging the substrates. In this work, a 2-step process suitable for Schott AF 32 eco glass and Corning Willow glass is developed, both 100 μm thick, the latter of which is compatible with roll-to-roll processes.

View Article and Find Full Text PDF

Wafer-Scale Demonstration of BEOL-Compatible Ambipolar MoS Devices Enabled by Plasma-Enhanced Atomic Layer Deposition.

ACS Appl Mater Interfaces

September 2025

Nanoelectronics Graphene and 2D Materials Laboratory, CITIC-UGR, Department of Electronics, University of Granada, Granada 18014, Spain.

The relentless scaling of semiconductor technology demands materials beyond silicon to sustain performance improvements. Transition metal dichalcogenides (TMDs), particularly MoS, offer excellent electronic properties; however, achieving scalable and CMOS-compatible fabrication remains a critical challenge. Here, we demonstrate a scalable and BEOL-compatible approach for the direct wafer-scale growth of MoS devices using plasma-enhanced atomic layer deposition (PE-ALD) at temperatures below 450 °C, fully compliant with CMOS thermal budgets.

View Article and Find Full Text PDF

Low-surface-energy (LSE) materials, such as polytetrafluoroethylene (PTFE), are extensively used in advanced technologies like 5G chip production and base station filters, due to their hydrophobicity, chemical resistance, low friction, and excellent dielectric properties. However, their inherent chemical inertness and nonwetting nature pose significant challenges to achieving strong adhesion. In this work, we present a pressure-sensitive adhesive (PSA) tape composed of fluorinated monomers and hydrophobic ionic liquids, synthesized through a one-step, scalable process.

View Article and Find Full Text PDF

We propose a dynamically tunable and angle-robust mid-infrared (mid-IR) absorber based on a hybrid metastructure composed of a top-layer Ge grating, an ultrathin SrTiO polar dielectric layer, a thermochromic VO film, and a metallic substrate. The optical response of the system is modeled using rigorous coupled-wave analysis (RCWA), revealing broadband and high-efficiency absorption across a wide range of incident angles (0°-80°) under transverse-magnetic (TM) polarization. The absorption behavior is governed by the interplay of multiple resonant mechanisms, including guided-mode resonance (GMR) in the Ge grating, phonon-polariton (PhP) excitation in the SrTiO layer, and cavity-like modes facilitated by the insulating VO.

View Article and Find Full Text PDF

Phonon polaritons─quasiparticles formed by coupling infrared (IR) photons with optical phonons in polar materials─enable highly confined light-matter interactions with lower losses than those of plasmonic systems. Although they have been successfully exploited for enhanced mid-IR chemical sensing in solid- and liquid-phase environments, their application in gas-phase detection remains largely underexplored. Here, we introduce a low-loss phonon polariton platform based on planar Pd/SiC heterostructures and nanostructured Pd/SiC metasurfaces for enhanced mid-IR gas detection.

View Article and Find Full Text PDF