Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Metabolic reprogramming plays an important role in therapeutic efficacy of hepatocellular carcinoma (HCC). However, the metabolic reprogramming-related key genes associated with transcatheter arterial chemoembolization (TACE) treatment sensitivity in HCC remain further investigation.

Methods: We analyzed data from public databases, The Cancer Genome Atlas and Gene Expression Omnibus, as well as metabolism-related genes (MRGs), to identify key genes associated with TACE treatment sensitivity. Further analysis was conducted on the relationship between key genes and immune cell infiltration, HCC-related genes, regulatory network construction, nomogram construction, and drug sensitivity analysis. Finally, the expression of key genes was validated based on databases and in vitro RT-qPCR.

Results: Four key genes (CDC20, LPCAT1, PON1, and SPP1) associated with TACE treatment sensitivity were identified. Increased CDC20, LPCAT1, and SPP1 and reduced PON1 were found in tumor tissues than normal tissues, as well as in advanced patients than early-stage patients. Lower expression of CDC20, LPCAT1, and SPP1, and higher expression of PON1 were detected in responsive patients than non-responsive patients. Patients with high expression of CDC20, LPCAT1, and SPP1, and low expression of PON1 had poor prognosis. They were also correlated with tumor immune microenvironment and sensitivity to multiple chemotherapy drugs. The expressions of key genes at the gene and protein levels were validated.

Conclusions: Our study provided systematic insights into identification of biomarkers for TACE treatment sensitivity in HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12098233PMC
http://dx.doi.org/10.1007/s12672-025-02606-zDOI Listing

Publication Analysis

Top Keywords

key genes
28
tace treatment
16
treatment sensitivity
16
cdc20 lpcat1
16
lpcat1 spp1
12
genes
9
metabolic reprogramming-related
8
reprogramming-related key
8
hepatocellular carcinoma
8
transcatheter arterial
8

Similar Publications

Integration of multi-omics resources reveals genetic features associated with environmental adaptation in the Wuzhishan pig genome.

J Therm Biol

September 2025

Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China. Electronic address:

In light of the challenges posed by global climate change, the environmental adaptability of organisms is becoming increasingly important. The Wuzhishan (WZS) pig, tolerant to high heat and humidity, is an ideal model for genomic study. By characterizing its genome and assessing its genetic diversity and runs of homozygosity (ROH), we can gain insights into its current conservation status and genomic architecture.

View Article and Find Full Text PDF

N460S in PB2 and I163T in nucleoprotein synergistically enhance the viral replication and pathogenicity of influenza B virus.

PLoS Pathog

September 2025

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.

Influenza B viruses (IBVs), though often overshadowed by influenza A viruses (IAVs), remain a significant global public health concern, particularly during seasons when they predominate. However, the molecular mechanisms underlying IBV pathogenicity remain largely unknown. In this study, we identified two amino acid substitutions, PB2-N460S and NP-I163T, from IBV clinical isolates with distinct replication and pathogenicity profiles.

View Article and Find Full Text PDF

Enoxaparin sodium (ES), a low molecular weight heparin derivative, has recently been recognized for its diverse biological activities. In particular, the ability of heparin to modulate inflammation has been utilized to enhance the biocompatibility of bone implant materials. In this study, we utilized poly (methyl methacrylate) (PMMA), a drug loading bone implant material, as a matrix and combined this with enoxaparin sodium (ES) to create enoxaparin sodium PMMA cement (ES-PMMA) to investigate the regulatory effects of ES on inflammatory responses in bone tissue from an animal model.

View Article and Find Full Text PDF

Experience-mediated transcriptional memory correlates with hypoxia resistance in the nervous system of the sea hare .

Am J Physiol Regul Integr Comp Physiol

September 2025

National Aplysia Resource. Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Key Biscayne, FL, USA.

Current therapeutics for hypoxic/ischemic brain damage can benefit from insights resulting from the study of hypoxia/anoxia resistant organisms. Hypoxia resistance, however, is not a common feature in mammalian models. Being naturally exposed to hypoxic/anoxic conditions, the sea hare could become a very useful model for the study of hypoxia resistance.

View Article and Find Full Text PDF

Diabetic kidney disease (DKD) involves oxidative stress-driven damage to glomeruli (Gloms) and proximal convoluted tubules (PCT). NAD(P)H: quinone oxidoreductase 1 (NQO1) regulates redox balance, but its compartment-specific role remains unclear. Streptozotocin (STZ)-induced hyperglycemia increased albuminuria and foot process effacement, with NQO1 KO (NKO) mice exhibiting greater podocyte injury than WT, indicating exacerbated glomerular damage.

View Article and Find Full Text PDF