98%
921
2 minutes
20
As a traditional ethanol-producing microorganism, Saccharomyces cerevisiae is an ideal host for consolidated bioprocessing. However, when overloaded cellulase genes are expressed in yeast, the metabolic burden on cells may greatly affect cell growth and cellulosic ethanol production. In this study, we developed a yeast consortium system that secretes and assembles five types of cellulases on the yeast cell surface to improve cellulosic ethanol production. This system involves one display strain, which provides the scaffoldin on the surface and several secretion strains that secrete each cellulase. The secreted dockerin-containing enzymes, cellobiohydrolase (CBH), endoglucanase (EG), β-glucosidase (BGL), cellobiose dehydrogenase (CDH), and lytic polysaccharide monooxygenase (LPMO), were randomly assembled to the scaffoldin to generate a pentafunctional mini-cellulosome via cohesion-dockerin interactions. The developed system relieved the metabolic burden placed on the engineered single yeast strain and leveraged the innate metabolic potential of each host. In addition, the enzymes in the consortium acted synergistically and efficiently boosted cellulose degradation and ethanol production. When compared with the conventional system, this consortium system increased the ethanol titers from 2.66 to 4.11 g/l with phosphoric acid swollen cellulose (PASC) as the substrate, an improvement of 55%. With Avicel as the substrate, ethanol titers increased from 1.57 to 3.24 g/l, representing an enhancement of 106%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108760 | PMC |
http://dx.doi.org/10.1093/femsyr/foaf022 | DOI Listing |
Dalton Trans
September 2025
Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China.
The main bottleneck faced by traditional hydrogen production technology through water electrolysis lies in the high energy consumption of the anodic oxygen evolution reaction (OER). Combining the thermodynamically favorable ethanol oxidation reaction (EOR) with the hydrogen evolution reaction provides a promising route to reduce the energy consumption of hydrogen production and generate high value-added products. In this study, a facile method was developed for nickel oxyhydroxide (NiOOH) fabrication.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, School of Chemical Engineering & Technology, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
Separation of ethanol-water azeotrope is extremely challenging. Here, we design and synthesize a new sulfate-pillared metal triazolate framework, which shows sieving-like separation of water/ethanol. A dynamic breakthrough verified the ultrahigh selectivity (145), and it could produce a record-breaking ethanol productivity (3.
View Article and Find Full Text PDFJ Exp Anal Behav
September 2025
Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, USA.
Polydrug abuse is the persistent self-administration of more than one reinforcing drug. The present study provided rhesus monkeys concurrent access to two drugs: 8% alcohol and solutions of either cocaine or methadone. The liquids were available under concurrent nonindependent fixed-ratio (FR) schedules across increasing and then decreasing ratio sizes.
View Article and Find Full Text PDFFood Res Int
November 2025
Centre for Pre-clinical Studies, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam 785006, India; AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India. Electronic address:
This is the first report on the functional potential of Akhuni, an ethnic food of Northeast India, against diabetes. Akhuni is a traditional fermented soybean product known for its umami taste and delicacy, commonly used in the cuisine of Northeast India. Treatment with ethanolic extract of Akhuni (AKET) for 8 weeks decreased glucose levels in the blood, increased body mass and enhanced the ability to tolerate glucose dose-dependently in the streptozotocin-induced diabetic mice in comparison with the group of diabetic control mice (DBC).
View Article and Find Full Text PDFJ Sci Food Agric
September 2025
Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, People's Republic of China.
Background: Blood orange peels represent an underutilized source of high-value flavonoids with broad bioactivities. Traditional single-extraction techniques for citrus flavonoids suffer from low efficiency due to polarity limitations, significantly restricting their industrial-scale development and application. As a result, there is an urgent need to develop green and efficient extraction processes to improve both the coverage and yield of citrus flavonoids.
View Article and Find Full Text PDF