Deciphering Coulombic Efficiency of Lithium Metal Anodes by Screening Electrolyte Properties.

Angew Chem Int Ed Engl

Beijing Key Laboratory of Complex Solid State Batteries & Tsinghua Center for Green Chemical Engineering Electrification, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P.R. China.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Coulombic efficiency (CE) is a quantifiable indicator for the reversibility of lithium metal anodes in high-energy-density batteries. However, the quantitative relationship between CE and electrolyte properties has yet to be established, impeding rational electrolyte design. Herein, an interpretable model for estimating CE based on data-driven insights of electrolyte properties is proposed. Hydrogen-bond acceptor basicity (β) and the energy level gap between the lowest unoccupied and the highest occupied molecular orbital (HOMO-LUMO gap) of solvents are identified as the top two parameters impacting CE by machine learning. β and HOMO-LUMO gap of solvents govern anode interphase chemistry. A regression model is further proposed to estimate the CE based on β and HOMO-LUMO gap. Using the new solvent screened by above regression model, the lithium metal anode in the pouch cell with an energy density of 418 Wh kg achieves the highest CE of 99.2%, which is much larger than previous CE ranging from 70%-98.5%. This work provides a reliable interpretable quantitative model for rational electrolyte design.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202507387DOI Listing

Publication Analysis

Top Keywords

lithium metal
12
electrolyte properties
12
homo-lumo gap
12
coulombic efficiency
8
metal anodes
8
rational electrolyte
8
electrolyte design
8
gap solvents
8
regression model
8
electrolyte
5

Similar Publications

Ultrathin amorphous materials are promising counterparts to 2D crystalline materials, yet their properties and functionalities remain poorly understood. Amorphous boron nitride (aBN) has attracted attention for its ultralow dielectric constant and superior manufacturability compared with hexagonal boron nitride. Here, we demonstrate wafer-scale growth of ultrathin aBN films with exceptional thickness and composition uniformity using capacitively coupled plasma-chemical vapor deposition (CCP-CVD) at 400 °C.

View Article and Find Full Text PDF

Electrolytes are important components in lithium-ion batteries. However, battery degradation due to irreversible electrochemical reactions in the electrolyte can consume electrolyte molecules and severely reduce its effective operation lifetime. It is hence important to study the electrochemical reaction pathways in the battery electrolyte to further improve lithium-ion battery reliability.

View Article and Find Full Text PDF

LiNiMnO (LNMO) is a promising material for the cathode of lithium-ion batteries (LiBs); however, its high operating voltage causes stability issues when used with carbonate battery electrolytes. Ionic liquids are a viable alternative to conventional carbonate solvents due to their thermal stability and electrochemical window. This work reports the performance of LNMO/Li half cells with an ionic liquid electrolyte (ILE) composed of 0.

View Article and Find Full Text PDF

Due to its sizable direct bandgap and strong light-matter interactions, the preparation of monolayer MoS has attracted significant attention and intensive research efforts. However, multilayer MoS is largely overlooked because of its optically inactive indirect bandgap caused by interlayer coupling. It is highly desirable to modulate and decrease the interlayer coupling so that each layer in multilayer MoS can exhibit a monolayer-like direct-gap behavior.

View Article and Find Full Text PDF

This study pioneers the use of organic nitrate C(NH)NO as an electrolyte additive in lithium metal batteries (LMBs). C(NH)NO can effectively construct a high-quality solid electrolyte interphase (SEI) on the lithium metal anode, thereby enabling dendrite-free and uniform spherical lithium (Li) deposition.

View Article and Find Full Text PDF