98%
921
2 minutes
20
Straw mulching influences soil carbon (C) cycling by adding organic matter and modifying the soil structure, with soil iron (Fe)-associated C (Fe-OC) and reactive oxygen species (ROS) playing critical roles in this process. However, the dynamics in soil Fe-OC and ROS following mulching in banana orchards remain unclear. This study investigated the impact of 3 years of straw mulching on soil Fe-OC, ROS, and soil C mineralization. The results showed that Fe-OC content decreased significantly in the first year of straw mulching, attributed to a weakened Fenton reaction, reduced reactive Fe oxides, and increased soil pH. In the subsequent two years, increased dissolved organic carbon (DOC) mitigated the negative impact on Fe-OC, preventing further significant reductions. Meanwhile, straw mulching significantly lowered soil ROS (O and ·OH) levels over the three years, contrary to the hypothesis that it would increase ROS by promoting microbial biomass. This reduction was linked to increased soil pH and a weakened Fenton reaction. Moreover, straw mulching significantly increased soil C mineralization in the second and third years but had no significant effect in the first year. Despite the potential negative impact of reduced ROS, straw mulching promoted soil C mineralization by increasing soil microbial activity and C sources. The distinct responses of soil C mineralization to straw mulching in the first year compared to the following two years suggest that the overall impact of straw mulching on this process is determined by the trade-off between the Fenton reaction and microbial activity. These results indicate that straw mulching significantly influenced soil Fe-OC, ROS, and C mineralization by modulating the Fenton reaction, microbial activity, and soil physicochemical properties, with specific changes varying depending on the duration of mulching. These insights enhance our understanding of how straw mulching drives soil C cycling in agricultural ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2025.125851 | DOI Listing |
Plants (Basel)
August 2025
College of Natural Resources and Environment, Northwest A&F University/Key Lab of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China.
To revive the practice of planting legume green manure (GM) in the fallow period in rainfed agricultural areas, it is essential to demonstrate the benefits of this practice on the yields and water use efficiency (WUE) of subsequent crops, especially when integrating with optimized water and fertilizer management. We conducted a field experiment to determine the positive effects of planting legume GM in the summer fallow on the yield, WUE, and nitrogen uptake efficiency (NupE) of subsequent winter wheat, which was grown with plastic film mulching and integrated fertilization in the Loess Plateau of China. A split-plot-designed experiment was arranged with two main treatments, namely (1) wheat planting followed by GM planting in the summer fallow (GM) and (2) conventional wheat monoculture followed by bare land summer fallow (BL), and three sub-treatments: (1) control treatment without any chemical fertilizer (Ct), (2) application of chemical N, P, and K as basal fertilizer (B), and (3) application of basal fertilizer plus wheat straw return (BS).
View Article and Find Full Text PDFMicroorganisms
July 2025
School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
Straw-returning is an effective way to improve straw utilization efficiency and reduce environmental pollution. Various straw-returning methods exist; however, their effects on soil microbial diversity and community composition in cool regions have been little studied. This study investigated the changes of soil microbial diversity and community composition under three straw-returning methods, i.
View Article and Find Full Text PDFPlants (Basel)
August 2025
College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China.
Water deficiency and low water use efficiency severely constrain wheat yield in dryland regions. This study aimed to identify suitable tillage methods and straw management to improve dry matter production, grain yield, and water use efficiency of wheat in the dryland winter wheat-summer bean (hereafter referred to as wheat-soybean) double-cropping system. A long-term located field experiment (onset in October 2009) with two tillage methods-plowing (PT) and rotary tillage (RT)-and two straw management-no straw mulching (NS) and straw mulching (SM)-was conducted at a typical dryland in China.
View Article and Find Full Text PDFEnviron Res
August 2025
College of Agronomy/State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Crop Physiology, Ecology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, Yan
Film mulching (FM) has been widely adopted in dryland agriculture to increase crop yields, but its potential long-term impacts on soil health and degradation remain a subject of debate. In contrast, straw returning (SR) has shown promising results in improving soil quality and enhancing economic returns, making it an effective measure to optimize FM practices. This study assessed the effects of varying straw return rates (0, 6, 12, and 18 t ha) on soil quality, ecosystem services, and economic benefits in a semiarid region, under both mulched (FM) and non-mulched conditions.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Hexing Road 26, Harbin, PR China. Electronic address:
The potential of paper as a plastic alternative is hindered by limited water resistance and mechanical strength. To address these challenges, this study developed a water-soluble chitosan/polyethylene glycol diglycidyl ether (PEGDE)/aminated lignin (AL) composite coating (CPA), which significantly enhanced the mechanical strength and water resistance of paper through molecular crosslinking and interface enhancement strategies. The CPA formed a dense crosslinked network on the surface and within the pores between fibers, enhancing the wet tensile strength of the paper by up to 75×.
View Article and Find Full Text PDF