98%
921
2 minutes
20
Determining tumor microsatellite status has significant clinical value because tumors that are microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) respond well to immune checkpoint inhibitors (ICIs) and oftentimes not to chemotherapeutics. We propose MSI-SEER, a deep Gaussian process-based Bayesian model that analyzes H&E whole-slide images in weakly-supervised-learning to predict microsatellite status in gastric and colorectal cancers. We performed extensive validation using multiple large datasets comprised of patients from diverse racial backgrounds. MSI-SEER achieved state-of-the-art performance with MSI prediction by integrating uncertainty prediction. We achieved high accuracy for predicting ICI responsiveness by combining tumor MSI status with stroma-to-tumor ratio. Finally, MSI-SEER's tile-level predictions revealed novel insights into the role of spatial distribution of MSI-H regions in the tumor microenvironment and ICI response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12089473 | PMC |
http://dx.doi.org/10.1038/s41746-025-01580-8 | DOI Listing |
IEEE Trans Cybern
September 2025
To combine the strengths of Gaussian and non-Gaussian latent variable models, a novel information fusion strategy has recently been proposed under the deep learning framework. Although promising results have been obtained, the critical structure learning problem remains unsolved, which seriously hinders the automation of data-driven modeling and analytics. In this article, the maximal information coefficient (MIC) method is introduced as a measurement of the AS between two latent variables, which has no restriction in the type of data distribution.
View Article and Find Full Text PDFJ Korean Med Sci
September 2025
Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, Korea.
Background: With the increasing incidence of skin cancer, the workload for pathologists has surged. The diagnosis of skin samples, especially for complex lesions such as malignant melanomas and melanocytic lesions, has shown higher diagnostic variability compared to other organ samples. Consequently, artificial intelligence (AI)-based diagnostic assistance programs are increasingly needed to support dermatopathologists in achieving more consistent diagnoses.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China. Electronic address:
Pyroelectrodynamic therapy (PEDT) of tumors faces challenges due to its low electrocatalytic efficiency at mild temperature and the potential for off-target toxicity to healthy tissue. To overcome these issues, we have engineered pyroelectric nanoparticles (NPs) that feature a pH-triggered heterojunction structure and tumor-selective reactive oxidative species (ROS) production, faclitating synergistic PEDT and mild photothermal therapy (PTT). Herein, molybdenum trioxide (MoO) was deposited in-situ on the surface of tetragonal BaTiO (tBT) to create tBT@MO.
View Article and Find Full Text PDFFront Med (Lausanne)
August 2025
Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul, Türkiye.
Introduction: Accurate and timely diagnosis of central nervous system infections (CNSIs) is critical, yet current gold-standard techniques like lumbar puncture (LP) remain invasive and prone to delay. This study proposes a novel noninvasive framework integrating handcrafted radiomic features and deep learning (DL) to identify cerebrospinal fluid (CSF) alterations on magnetic resonance imaging (MRI) in patients with acute CNSI.
Methods: Fifty-two patients diagnosed with acute CNSI who underwent LP and brain MRI within 48 h of hospital admission were retrospectively analyzed alongside 52 control subjects with normal neurological findings.
Front Oncol
August 2025
Department of Spinal Surgery, No. 1 Orthopedics Hospital of Chengdu, Chengdu, China.
Primary bone tumours remain among the most challenging indications in radiation oncology-not because of anatomical size or distribution, but because curative intent demands ablative dosing alongside stringent normal-tissue preservation. Over the past decade, the therapeutic landscape has shifted markedly. Proton and carbon-ion centres now report durable local control with acceptable late toxicity in unresectable sarcomas.
View Article and Find Full Text PDF