Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Despite notable progress in the power conversion efficiency (PCE) of lead halide perovskite solar cells (PSCs), their commercial viability remains limited by stability issues and the risk of lead contamination. Uncoordinated lead ions can introduce defects during perovskite crystallization, resulting in reduced stability and potential environmental contamination. Here, we synthesized a biomass-derived tetrabutylammonium alginate (TBA-Alg) polymer that forms a connected network at the perovskite surface and grain boundaries to effectively manage lead ions and passivate defects. The alginate groups anchor unbound lead ions, promoting more ordered crystallization, while the hydrophobic tetrabutylammonium chains enhance moisture resistance. The TBA-Alg-modified inverted p-i-n PSCs achieved a PCE of 25.01% and retained 95.5% of their initial performance after 2000 hours of storage. Under continuous illumination at ∼60% relative humidity (RH) for 1050 hours, the devices retained 80% efficiency. Even under water immersion, the TBA-Alg network effectively protected lead ions from water erosion and suppressed 83% of lead leakage. This strategy simultaneously achieves high PCE and stability of lead halide PSCs, and effectively prevents lead contamination; thereby offering the potential to greatly advance the commercialization of lead halide PSCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12071351PMC
http://dx.doi.org/10.1039/d4ee06038eDOI Listing

Publication Analysis

Top Keywords

lead halide
16
lead ions
16
lead
12
halide perovskite
8
perovskite solar
8
solar cells
8
lead contamination
8
halide pscs
8
biomass-derived functional
4
functional additive
4

Similar Publications

Pressure-Driven Structural and Optoelectronic Tuning of Cl-Substituted 2D Lead Halide Perovskite (ClPMA)PbI.

J Phys Chem Lett

September 2025

Department of Earth System Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.

We present a systematic high-pressure investigation of the chlorine-functionalized two-dimensional hybrid perovskite (ClPMA)PbI, integrating high-pressure synchrotron powder X-ray diffraction (HP-PXRD), photoluminescence spectroscopy (HP-PL), and first-principles density functional theory (DFT) calculations. Under hydrostatic compression up to 6.18 (±0.

View Article and Find Full Text PDF

Chiral halide perovskite (c-HP) semiconductors exhibit on average a large chiral-induced spin selectivity (CISS) effect. Nevertheless, the microscopic details of CISS and its integration in opto-spintronic constructs remain nascent. Reliable reporting of CISS performance characteristics represents a significant challenge in providing the necessary design rules.

View Article and Find Full Text PDF

Perovskite-silicon tandem solar cells have attracted considerable attention owing to their high power conversion efficiency (PCE), which exceeds the limits of single-junction devices. This study focused on lead-free tin-based perovskites with iodine-bromine mixed anions. Bromide perovskites have a wide bandgap; therefore, they are promising light absorbers for perovskite-silicon tandem solar cells.

View Article and Find Full Text PDF

Electric Field Influences on the Carrier Transport Characteristics of an Individual CsPbBr Microplate.

ACS Appl Mater Interfaces

September 2025

National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.

For optoelectronic devices based on lead-halide perovskites and other semiconductors, a comprehensive understanding of the electric field influences on the carrier transport characteristics is critical to the optimization of their practical performances. To fulfill this challenging goal, here we have employed photoluminescence spatial image and transient absorption microscopy measurements on an individual CsPbBr microplate biased at external voltages in an Au/CsPbBr/Au device. At the subpicosecond time scale, some photogenerated excitons are dissociated into free electrons and holes that drift toward the electrodes to leave behind unfilled defect sites, which are capable of scattering the residual excitons to yield a reduced diffusion coefficient.

View Article and Find Full Text PDF

Levetiracetam-Assisted Perovskite Crystallization and Tripartite Lead Iodide Reduction in Perovskite Solar Cells.

Adv Mater

September 2025

Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.

Sequential deposition technique is widely used to fabricate perovskite films with large grain size in perovskite solar cells (PSCs). Residual lead halide (PbI) in the perovskite film tends to be decomposed into metallic lead (Pb) under long-term heating or light soaking. Here, a chiral levetiracetam (LEV) dopant containing α-amide and pyrrolidone groups is introduced into the PbI precursor solution.

View Article and Find Full Text PDF