A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

NSP6 regulates calcium overload-induced autophagic cell death and is regulated by KLHL22-mediated ubiquitination. | LitMetric

NSP6 regulates calcium overload-induced autophagic cell death and is regulated by KLHL22-mediated ubiquitination.

J Adv Res

Jiangxi Institute of Respiratory Disease, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City 330006 Jiangxi, China; Jiangxi Clinical Research Center for Respiratory Diseases, Nanchang City 330006 Jiangx

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a substantial global threat. SARS-CoV-2 nonstructural proteins (NSPs) are essential for impeding the host replication mechanism while also assisting in the production and organization of new viral components. However, NSPs are not incorporated into viral particles, and their subsequent fate within host cells remains poorly understood. Additionally, their role in viral pathogenesis requires further investigation.

Objectives: This study aimed to discover the ultimate fate of NSP6 in host cells and to elucidate its role in viral pathogenesis.

Methods: We investigated the effects of NSP6 on cell death and explored the underlying mechanism; moreover, we examined the degradation mechanism of NSP6 in human cells, along with analysing its correlation with coronavirus disease 2019 (COVID-19) severity in patient peripheral blood mononuclear cells (PBMCs).

Results: NSP6 was demonstrated to induce cell death. Specifically, NSP6 interacted with EI24 autophagy-associated transmembrane protein (EI24) to increase intracellular Ca levels, thereby enhancing the interactions between unc-51-like autophagy activating kinase 1 (ULK1) and RB1 inducible coiled-coil 1 (RB1CC1/FIP200), as well as beclin 1 (BECN1) and phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3). This cascade ultimately triggers autophagy, thus resulting in cell death. Additionally, we discovered that the homeostasis of the NSP6 protein was regulated by K48-linked ubiquitination. We identified kelch-like protein 22 (KLHL22) as the E3 ligase that was responsible for ubiquitinating and degrading NSP6, restoring intracellular calcium homeostasis and reversing NSP6-induced autophagic cell death. Moreover, NSP6 expression levels were observed to be positively associated with the severity of SARS-CoV-2-induced disease.

Conclusion: This study reveals that KLHL22-mediated ubiquitination controls NSP6 stability and that NSP6 induces autophagic cell death via calcium overload, highlighting its cytotoxic role and suggesting therapeutic strategies that target calcium signaling or promote NSP6 degradation as potential interventions against COVID-19.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12302427PMC
http://dx.doi.org/10.1016/j.jare.2025.05.031DOI Listing

Publication Analysis

Top Keywords

cell death
24
nsp6
12
autophagic cell
12
klhl22-mediated ubiquitination
8
host cells
8
role viral
8
death nsp6
8
cell
6
death
6
nsp6 regulates
4

Similar Publications