Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An accurate ammonia (NH) emission inventory is crucial for policymakers developing air pollution mitigation strategies. Both satellite observations and bottom-up estimates identify significant NH emission hotspots in China. However, bottom-up NH emission inventories are highly uncertain due to the lack of localized emission factors, while large and uncertain errors in IASI satellite NH columns have hindered their direct application in top-down emission inversion methods. In this study, we perform a top-down optimization of monthly NH emissions over China using IASI-derived surface NH concentrations with well-evaluated error estimates, combined with the CAMx model at a 36 km resolution. Our posterior NH emissions for 2020 (12.3 [10.9-13.6] Tg N yr) are significantly higher than prior estimates from the MEIC inventory (7.6 Tg N yr), which primarily underestimates emissions during the warm months in hotspot areas (e.g., NCP and MLYR). We employ multiple approaches to comprehensively evaluate our inversion results. Our study highlights that error estimates for low-value observations are a particularly critical factor in the inversion setup, significantly influencing the reliability of emission optimization.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.4c10878DOI Listing

Publication Analysis

Top Keywords

emissions china
8
error estimates
8
emission
6
estimation ammonia
4
emissions
4
ammonia emissions
4
china iasi
4
iasi satellite-derived
4
satellite-derived surface
4
surface observations
4

Similar Publications

Time-resolved data acquisition is crucial for compositional analysis using Laser-Induced Breakdown Spectroscopy (LIBS). It can be managed by adjusting the delay time and gate width of the spectrometer. This study describes the compositional analysis of molybdenum (Mo) ore utilizing charge coupled device (CCD) and intensified charge-coupled device (ICCD) based LIBS systems.

View Article and Find Full Text PDF

Correction: Carbon dots with tunable dual emissions: from the mechanism to the specific imaging of endoplasmic reticulum polarity.

Nanoscale

September 2025

Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.

Correction for 'Carbon dots with tunable dual emissions: from the mechanism to the specific imaging of endoplasmic reticulum polarity' by E. Shuang , , 2020, , 6852-6860, https://doi.org/10.

View Article and Find Full Text PDF

Pure-Green Circularly Polarized Multiple Resonance Thermally Activated Delayed Fluorescence Enantiomers with Discontinuous Fused Benzene Rings.

Adv Mater

September 2025

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.

Helicene-based circularly polarized luminescence (CPL) materials suffer from severely low color purity in circularly polarized organic light-emitting diodes (CP-OLEDs). Here, a novel molecular engineering strategy is introduced by replacing helicene containing continuous fused benzene rings with a multiple resonance (MR) framework comprising discontinuous fused benzene rings. This approach effectively suppresses high-frequency C─C bond stretching vibrations and enhances short-range charge transfer, enabling high color purity, CPL activity, and efficient thermally activated delayed fluorescence (TADF).

View Article and Find Full Text PDF

Unlocking High-Performance Electrochemiluminescence in Supramolecular Coordination Frameworks via π-Bridge Engineering and Aggregation.

Small

September 2025

School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510641, China.

Aggregation-induced electrochemiluminescence (AIECL) is a promising strategy for enhancing electrochemiluminescence (ECL) efficiency by minimizing energy loss of excited-state ECL emitters. However, rational design of high-efficiency AIECL emitters is hindered by limited mechanistic understanding and an unclear structure-performance relationship. To address this, four supramolecular coordination frameworks (SCFs) with varying π-bridge structures are synthesized using pyridine-functionalized tetraphenylethene (TPE) as the ligand and Pt(II) as the coordination center.

View Article and Find Full Text PDF

Objectives: Lymph node metastasis (LNM) is an important factor affecting the stage and prognosis of patients with lung adenocarcinoma. The purpose of this study is to explore the predictive value of the stacking ensemble learning model based on F-FDG PET/CT radiomic features and clinical risk factors for LNM in lung adenocarcinoma, and elucidate the biological basis of predictive features through pathological analysis.

Methods: Ninety patients diagnosed with lung adenocarcinoma who underwent PET/CT were retrospectively analyzed and randomly divided into the training and testing sets in a 7:3 ratio.

View Article and Find Full Text PDF