98%
921
2 minutes
20
Background: Weight reduction through lifestyle, activity, and dietary interventions are the mainstay of initial therapy for metabolic dysfunction associated steatotic liver disease. Data on the relative effectiveness and metabolic pathways linking weight loss and decreased hepatic steatosis are lacking. We sought to identify coordinated changes between the circulating proteome and hepatic steatosis within a randomized clinical trial of alternate day fasting and exercise and prioritize proteins relevant to hepatic steatosis within a broader context using a community cohort.
Methods And Results: We quantified a broad cardiometabolic proteome (>300 proteins) in 67 individuals randomized in a 2×2 factorial design to alternate day fasting and exercise before and after the 3-month intervention to identify proteomic signatures of hepatic steatosis (measured by magnetic resonance imaging proton density fat fraction). Then, we analyzed the cross-sectional relationship of overlapping proteins (≈170) with hepatic attenuation (a computed tomographic technique linked to steatosis) in 707 participants from a community cohort. Principal component analysis demonstrated a proteomic signature associated with intrahepatic triglyceride content (Spearman rho=0.55, <0.001) and insulin resistance (homeostatic model assessment for insulin resistance, Spearman rho=0.39, =0.001). Changes in this proteomic signature were associated with changes in intrahepatic triglyceride content over the intervention period (beta=0.12, <0.001). Moreover, cross-sectional analysis of overlapping proteins with hepatic attenuation in the community cohort showed generally, directionally consistent associations with hepatic steatosis.
Conclusions: These findings highlight the potential for broad proteomic profiling in small nutritional interventional studies with serial phenotyping alongside confirmatory large cohort epidemiology to prioritize targets of hepatic steatosis and cardiometabolic risk for mechanistic study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/JAHA.124.037100 | DOI Listing |
Helicobacter
September 2025
Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Background: Several clinical studies have demonstrated that Helicobacter pylori (Hp) infection may exacerbate the progression of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD); however, the underlying mechanisms remain unclear. This study aims to investigate the characterization of the gastric microbiome and metabolome in relation to the progression of MASLD induced by Hp infection.
Methods: We established a high-fat diet (HFD) obese mouse model, both with and without Hp infection, to compare alterations in serum and liver metabolic phenotypes.
J Steroid Biochem Mol Biol
September 2025
Biochemistry and Phytochemistry Research Division, Jubilee Centre for Medical Research, Thrissur, Kerala, 680005, India. Electronic address:
7-Ketocholesterol (7-KC) is a biologically active oxysterol formed through the oxidation of cholesterol, predominantly under conditions of oxidative stress. It is generated both enzymatically in specific tissues such as the brain and liver, and non-enzymatically via reactive oxygen species (ROS), especially in aging tissues and heat-processed animal-derived foods. 7-KC exerts multifaceted effects on human health, extending beyond lipid metabolism to disrupt glucose and amino acid utilization, impair mitochondrial function, and provoke endoplasmic reticulum (ER) stress.
View Article and Find Full Text PDFJ Nutr Biochem
September 2025
Department of Woman-Mother-Child, Division of Pediatrics, DOHaD Laboratory, University of Lausanne and Lausanne University Hospital, 1011 Lausanne, Switzerland. Electronic address:
Background: Individuals born after intrauterine growth restriction (IUGR) have a higher risk of developing metabolic syndrome (MetS) in adulthood. In a rat model, male IUGR offspring exhibit MetS features-including elevated systolic blood pressure, glucose intolerance, non-alcoholic fatty liver disease, and increased visceral adipose tissue (VAT)-by 6 months of age. Female offspring, however, do not.
View Article and Find Full Text PDFJ Nutr Biochem
September 2025
Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, PR CHINA
Increasing evidence indicates that ferroptosis contributes to the occurrence and development of metabolic dysfunction-associated fatty liver disease (MAFLD). This study aimed to investigate the improvement effect of plant sterol ester of α-linolenic acid (PS-ALA) on ferroptosis in hepatocytes and further elucidate the underlying molecular mechanism, focusing on the regulation of Nrf2 signaling. We found that PS-ALA ameliorated liver iron overload and reduced ROS generation and lipid peroxides (MDA and 4-HNE) production both in mice fed a high-fat diet and HepG2 cells induced by oleic acid/erastin.
View Article and Find Full Text PDFJPEN J Parenter Enteral Nutr
September 2025
Division of Gastroenterology, Department of Medicine, Toronto General Hospital, University of Toronto, University Health Network, Toronto, Ontario, Canada.
Background: Intravenous lipid emulsions are a key component of parenteral nutrition, and their fatty acid compositions may influence immune responses and clinical outcomes.
Methods: This retrospective cohort study conducted from January 2020 to December 2022 compared clinical outcomes of hospitalized non-critical care patients receiving parenteral nutrition with either mixed oil or soybean oil lipid emulsions for at least 48 h. The primary outcome was a composite of the presence of pneumonia, urinary tract infection, or an intra-abdominal collection diagnosed within 14 days of initiating parenteral nutrition.