98%
921
2 minutes
20
As critical load-bearing components of high-speed trains, bogies endure multidirectional alternating loads during long-term operation, making their dynamic strain characteristics and structural integrity pivotal to operational safety. Therefore, real-time dynamic strain monitoring of bogies is essential for predicting and preventing high-speed train accidents. Compared to traditional Non-Destructive Testing and Evaluation (NDT&E) methods, Radio Frequency Identification (RFID) sensors are more suitable for Structural Health Monitoring (SHM) due to their wireless capabilities and cost-effectiveness. Here we propose a wireless real-time monitoring system that utilizes integrated RFID tags with microcontrollers and sensor modules for real-time dynamic strain monitoring of Einel-rad-Einelfahrwerk (EEF) bogies. The microcontroller converts analog signals into digital, enhancing environmental interference resistance. The RFID tags wirelessly transmit digital signals to readers and host computers. To verify accuracy and real-time dynamic strain detection capabilities of designed system, experiments were conducted in laboratory settings and on-site with high-speed train bogies. Experimental results validate the system's 200 Hz dynamic strain detection capability with a 70 cm operational range. Laboratory calibrations within 600-1400 με exhibited absolute errors <19.39 με (2.07%). On-site tests on bogies revealed absolute errors of 5.08 με (7.50%) for axle strain and 7.59 με (7.66%) for wheel hub lateral strain under operational conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12078583 | PMC |
http://dx.doi.org/10.1038/s44172-025-00429-y | DOI Listing |
Pestic Biochem Physiol
November 2025
Anhui Provincial Key Laboratory of Biological Control, Anhui Agricultural University, Hefei 230036, China. Electronic address:
Microbial consortia, involving two or more microorganisms, have been explored for pest management purposes, despite concerns regarding competitive exclusion among entomopathogenic fungi that may undermine synergistic effects. However, the precise molecular mechanisms governing entomopathogen competition in vivo remain inadequately elucidated. Here, we investigate competitive exclusion dynamics between two prominent entomopathogens, Metarhizium robertsii and Beauveria bassiana.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 311300, China. Electronic address:
Tobacco brown spot disease (TBSD), is a severe leaf disease caused by Alternaria alternata, and its management heavily relies on dicarboximide fungicides. This study analyzed procymidone, a dicarboximide fungicide, resistance in 96 strains of A. alternata isolated from tobacco in Guizhou Province.
View Article and Find Full Text PDFNanotechnology
September 2025
State Key Laboratory of Optoelectronic Materials and Technologies School of Chemistry and Chemical Engineering, Sun Yat-Sen University, No 135, XinGangXi Road, Guangzhou 510275, guangzhou, 510275, CHINA.
Silicon carbide nanowires (SiC NWs) combine the benefits of bulk SiC materials with the properties of low-dimensional nanomaterials. They are known for their excellent mechanical strength and durability, which are critical for their potential applications in high-stress environments and micro-nano functional systems. Here, the mechanical properties and deformation mechanisms of 2H-SiC NWs with rare defects in the [0001] orientation are reported.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
College of Physics and Electronic Information, Yunnan Key Laboratory of Optoelectronic Information Technology, Yunnan Normal University, Kunming 650500, China. Electronic address:
Antimony trisulfide (SbS) has emerged as a promising inorganic semiconductor for optoelectronics due to its distinctive anisotropic crystal structure and suitable bandgap (∼1.7 eV). While hydrothermal synthesis remains challenging for achieving high crystallinity and controlled morphology, we developed an innovative dual‑sulfur precursor strategy utilizing sodium thiosulfate (STS) and thioacetamide (TAA) at a 7:2 M ratio with SbCl.
View Article and Find Full Text PDFUltrasonics
September 2025
Paderborn University, Paderborn, Germany.
This study investigates the phenomenon of mode repulsion in Lamb waves propagating through two coupled plates with an elastic interface. Using a spring-based coupling model and the Scaled Boundary Finite Element Method, the dispersion curves of the coupled system are analyzed under various interface conditions-weak coupling, sliding boundary, and perfect coupling. This research highlights how the mechanical stiffness of the interface influences the separation of modes and the emergence of repulsion regions.
View Article and Find Full Text PDF