98%
921
2 minutes
20
Multifunctional coupled hybrid materials have extremely high potential for application in a variety of complex scenarios owing to advantages such as versatility and controllable properties. In this study, a novel functional material with electromagnetic coupling properties [Ni(NCS)(CHN)] () was obtained by naturally evaporating an aqueous solution of nickel chloride hexahydrate, hexamethylenetetramine (HMTA), and potassium thiocyanate as raw materials. Structure-property characterization revealed that crystallized in the 2/n space group with a two-dimensional (2D) network structure formed by hydrogen-bonding interactions between neighboring nickel complexes. Calculations using the Gaussian program indicated that HMTA exhibited pronounced spatial molecular rotation. This induced obvious reversible dielectric cycling near 240 K, giving rise to semiconducting properties and an optical band gap of 3.35 eV. Molecular rotation caused changes in the 2D network structure, inducing short-range magnetic ordering in the temperature range of 2-50 K. This resulted in the formation of a potential ferromagnet and the presence of a distinct reversible redox peak in the -0.2-0.8 V potential range. Structure-property analyses showed that is a supramolecular rotation-induced semiconducting multifunctional crystalline material with reversible electromagnetic coupling properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12071420 | PMC |
http://dx.doi.org/10.3390/ijms26094050 | DOI Listing |
Phys Rev Lett
August 2025
University of Delaware, Department of Physics and Astronomy, Newark, Delaware 19716, USA.
Ultrafast light-driven strongly correlated antiferromagnetic insulators, such as prototypical NiO with a large Mott energy gap ≃4 eV, have recently attracted experimental attention using photons of both subgap [H. Qiu et al., Nat.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
University of York, School of Physics, Engineering and Technology, York YO10 5DD, United Kingdom.
We propose a model that is able to reproduce the type-II ultrafast demagnetization dynamics observed in 2D magnets. The spin system is coupled to the electronic thermal bath and is treated with atomistic spin dynamics, while the electron and phonon heat baths are described phenomenologically by coupled equations via the two-temperature model. Our proposed two-temperature model takes into account the effect of the heated substrate, which for 2D systems results in a slow demagnetization regime.
View Article and Find Full Text PDFPLoS One
September 2025
Electrical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt.
With the increasing demand for wind energy in the electric power generation industry, optimizing robust and efficient control strategies is essential for a wind energy conversion system (WECS). In this regard, this study proposes a novel hybrid control strategy for wind power systems directly coupled to a permanent-magnet synchronous generator (PMSG). The contribution of this work is to propose a control strategy design based on a combination of the nonlinear Backstepping approach for system stabilization according to Lyapunov theory and the application of artificial neural network to maximize energy harvesting regardless of wind speed fluctuations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China.
Transient electronics that can degrade after fulfilling their designed functionalities offer transformative potentials in biomedical implants (eliminating secondary surgeries), ecofriendly consumer electronics (reducing e-waste), and secure systems. However, the development of reliable transient energy supplies remains a critical challenge, thus limiting their widespread implementation. Among various solutions, wireless power supplies via near-field inductive coupling stand out as particularly promising candidates.
View Article and Find Full Text PDFAnalyst
September 2025
School of Information Science and Technology, Fudan University, 220 Handan Rd, Shanghai 200433, China.
Mercury(II) ions (Hg) are one of the most common and highly toxic heavy metal ions, which can contaminate the environment and damage the human health. Therefore, the precise detection of trace Hg concentration is particularly important. Herein, gold nanoparticles-enhanced silver-coated hollow fiber (HF) surface plasmon resonance (SPR) sensor was developed for the highly sensitive detection of Hg ions.
View Article and Find Full Text PDF