Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ischemic stroke often leads to neurological deficits, including olfactory dysfunction, which can significantly diminish quality of life. Photobiomodulation (PBM) has emerged as a promising therapeutic strategy for enhancing post-stroke recovery, although the molecular mechanisms, particularly regarding gene expression change, are not yet fully understood. This study investigates the long-term effects of photothrombosis (PT) on olfactory function and the olfactory bulb (OB) microenvironment, with a focus on PBM's efficacy during both early and late phases. In a mouse OB PT stroke model, PBM therapy (808-nm laser, 40 J/cm fluence, 325 mW/cm, 2 min daily) was applied from day 2 to day 7 post-PT. Olfactory function was monitored from pre-stroke through day 28 using the buried food test (BFT), and MRI scans were performed on days 7 and 28 to assess tissue damage. RNA sequencing (RNA-seq) and reverse transcription quantitative PCR (RT-qPCR) were conducted on day 7 to evaluate gene expression changes, with additional RT-qPCR analyses performed on day 28. PBM significantly accelerated olfactory function recovery by day 14, with full recovery maintained through day 28. Despite functional recovery, MRI results indicated persistent infarction at 28 days. RNA-seq identified upregulation of neuroprotective genes, including Gpr39 and Or4m1, following PBM treatment, suggesting enhanced gene expression related to acute-phase recovery. However, the impact of PBM on gene expression and functional recovery appeared to wane in the later stages of recovery. These findings underscore PBM's potential to enhance early-stage recovery in ischemic stroke, though its benefits may be more limited in the chronic phase.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12975-025-01343-3DOI Listing

Publication Analysis

Top Keywords

gene expression
20
olfactory function
16
ischemic stroke
12
recovery
9
functional recovery
8
day
7
olfactory
6
gene
5
expression
5
pbm
5

Similar Publications

The effect of non-functionalized polystyrene nanoparticles (PS-NPs) with diameters of 29, 44, and 72 nm on plasmid DNA integrity and the expression of genes involved in the architecture of chromatin was investigated in human peripheral blood mononuclear cells (PBMCs). The cells were incubated with PS-NPs at concentrations ranging from 0.001 to 100 µg/mL for 24 hours.

View Article and Find Full Text PDF

Multi-Omics and Clinical Validation Identify Key Glycolysis- and Immune-Related Genes in Sepsis.

Int J Gen Med

September 2025

Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.

Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.

Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.

View Article and Find Full Text PDF

A myotropic AAV vector combined with skeletal muscle -regulatory elements improve glycogen clearance in mouse models of Pompe disease.

Mol Ther Methods Clin Dev

June 2025

Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France.

Pompe disease is a glycogen storage disorder caused by mutations in the acid α-glucosidase (GAA) gene, leading to reduced GAA activity and glycogen accumulation in heart and skeletal muscles. Enzyme replacement therapy with recombinant GAA, the standard of care for Pompe disease, is limited by poor skeletal muscle distribution and immune responses after repeated administrations. The expression of GAA in muscle with adeno-associated virus (AAV) vectors has shown limitations, mainly the low targeting efficiency and immune responses to the transgene.

View Article and Find Full Text PDF

Species-specific gene expression manipulation in humanized livers of chimeric mice via siRNA-encapsulated lipid nanoparticle treatment.

Mol Ther Methods Clin Dev

June 2025

Eisai Co., Ltd., Tsukuba Research Laboratories, 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan.

Liver-humanized chimeric mice (PXB-mice) are widely utilized for predicting human pharmacokinetics (PK) and as human disease models. However, residual metabolic activity of mouse hepatocytes in chimeric mice can interfere with accurate human PK estimation. Lipid nanoparticle (LNP)-formulated small interfering RNA (siRNA) treatment makes it possible to eliminate the shortcomings of chimeras and create new models.

View Article and Find Full Text PDF

Bietti crystalline dystrophy (BCD) is an autosomal recessive disorder caused by loss-of-function mutations in the gene, characterized by crystal-like lipid deposits in the retina, progressive photoreceptor loss, and retinal pigment epithelium (RPE) deterioration. Currently, there are no approved treatments for BCD. VGR-R01, an investigational gene therapy, uses subretinal administration of recombinant adeno-associated virus type 8 (AAV8) vector to deliver the human CYP4V2 gene.

View Article and Find Full Text PDF