Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In isocitrate dehydrogenase wildtype glioblastoma (GBM), cellular heterogeneity across and within tumors may drive therapeutic resistance. Here we analyzed 121 primary and recurrent GBM samples from 59 patients using single-nucleus RNA sequencing and bulk tumor DNA sequencing to characterize GBM transcriptional heterogeneity. First, GBMs can be classified by their broad cellular composition, encompassing malignant and nonmalignant cell types. Second, in each cell type we describe the diversity of cellular states and their pathway activation, particularly an expanded set of malignant cell states, including glial progenitor cell-like, neuronal-like and cilia-like. Third, the remaining variation between GBMs highlights three baseline gene expression programs. These three layers of heterogeneity are interrelated and partially associated with specific genetic aberrations, thereby defining three stereotypic GBM ecosystems. This work provides an unparalleled view of the multilayered transcriptional architecture of GBM. How this architecture evolves during disease progression is addressed in the companion manuscript by Spitzer et al.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12081307PMC
http://dx.doi.org/10.1038/s41588-025-02167-5DOI Listing

Publication Analysis

Top Keywords

multilayered transcriptional
8
transcriptional architecture
8
gbm
5
architecture glioblastoma
4
glioblastoma ecosystems
4
ecosystems isocitrate
4
isocitrate dehydrogenase
4
dehydrogenase wildtype
4
wildtype glioblastoma
4
glioblastoma gbm
4

Similar Publications

Introduction And Aim: Oral squamous cell carcinomas (OSCCs) are one of the most frequently diagnosed head and neck cancers with a poor prognosis despite the advancements in diagnostic techniques and treatment strategies. The progression of OSCC is driven by several molecular mechanisms, among them the overexpression of transcription factor RelA, which plays a crucial role by correlating with the clinicopathological characteristics.

Methods: This systematic investigation focused on identifying the top 25 crucial molecular descriptors to predict the RelA inhibitor through the quantitative structure-activity relationship (QSAR)-based artificial neural network model.

View Article and Find Full Text PDF

Tissue-resident memory T cells (TRM) remain in nonlymphatic barrier tissues for extended periods and are deeply involved in immune memory at the site of inflammation. Here, we employed multilayered single-cell analytic approaches including chromatin, gene, and protein profiling to characterize a unique CD4+ TRM subset present in the inflamed gut mucosa of Crohn's disease patients. We identified two key transcription factors, RUNX2 and BHLHE40, as regulators of pathologically relevant CD4+ TRM.

View Article and Find Full Text PDF

Background: As wheat is a globally important staple crop, the molecular regulatory network underlying heterosis in wheat remains incompletely understood. The flag leaf is the primary source of photoassimilates during grain filling and plays a crucial role in yield formation. However, the genetic mechanisms linking flag leaf development to heterosis are still unclear.

View Article and Find Full Text PDF

Exploring the multilayered response of TB bacterium Mycobacterial tuberculosis to lysosomal injury.

FEMS Microbiol Rev

September 2025

Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201306.

Mtb subverts host immune surveillance by damaging phagolysosomal membranes, exploiting them as replication niches. In response, host cells initiate a coordinated LDR, integrating membrane repair, selective autophagy, and de novo biogenesis. This review delineates a systems-level model of lysosomal quality control governed by three critical regulatory axes: LGALS3/8/9, TRIM E3 ubiquitin ligases, and the AMPK-TFEB signaling pathway.

View Article and Find Full Text PDF

Astrocytic tumors are a heterogeneous group of glial neoplasms characterized by marked differences in biological behavior and patient prognosis. Transforming growth factor-beta (TGF-β) signaling plays a pivotal role in astrocytoma pathogenesis; however, the extent and mechanisms of its epigenetic regulation remain poorly understood. This study aimed to investigate how promoter methylation and microRNA-mediated mechanisms regulate key genes within the TGF-β signaling pathway across various astrocytoma grades.

View Article and Find Full Text PDF